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Writing thermodynamic quantities near a critical point as f; ~A; [£]7% (1+a; [t[®),
where t = (T—T,)/T,, we show that to leading order in € = 4 —d one has a;/a; = (\; - 1,0)/

(A; = 2%; %), where A;° is the mean-field value of A; .

This ratio is also equal to (A; eff

—N)/(Nj,erf —A), where A s is derived from a fit of data with f; ~ [t]=2.eff | Various
experiments are analyzed and compared to these predictions.

Some seven years ago it was realized, both ex-
perimentally' and theoretically,? that analyses of
data taken not too close to a critical point should
include “correction-to-scaling” confluent singu-
lavity terms. A thermodynamic quantity f; should
thus be written as

Fi=Alt 7N 4q 2|2 +0(lE 22)], (1)

where ¢ =(T —T,)/T.. The exponent A has since
been estimated by various methods,® % and its
best values are A =0.493, 0.521, and 0.550 for
n=1, 2, and 3 component systems.* Experimen-
tal results, which are fitted with the pure power
law f; = A; .¢¢|#]" Mieff, will thus yield values of
Xieff glven by®

>‘i,e]")"z)‘i_ai Al—filA+O(l7i‘2A)s (2)

where 7, is some average temperature.” Thus,
experimentally determined effective exponents
may differ significantly from their predicted uni-
versal values ;.

Although many theoretical results are now
known about universal velations among the lead-
ing critical amplitudes,® not much information is
available on vatios among the covvection ampli-
tudes a;, which are also predicted to be univer-
sal. High-temperature series expansions® show
that a,*/a,* is universal (¢ and x are the corre-
lation length and the susceptibility, while the plus
means T > T,), with the values 0.70+0.03 (2 =1)
and 0.6+0.1 (2=2). More recently, Chang and
Houghton® calculated a.*/a;~ (C is the specific
heat, while the minus means T <T,) to order €®
(d =4 — € is the dimensionality).

In this paper we show that, to leading order in
€, one has

a,-/aj=(>\.~ —Aio)/()\,-—Ajo)+0(€), (3)

where ),° is the mean-field value of x;. If two ef-
fective exponents are measured over a similar
temperature range, then Egs. (2) and (3) also im-
ply that

Nierr =2/ W epr =2 ;) =a;/a; )

[if two effective exponents are measured over dif-
ferent temperature ranges, then the left-hand
side of Eq. (4) should be multiplied by |7,;/%;|*].
Such universal ratios should be of great help in
the analysis of experimental data involving effec-
tive exponents. Equation (4) simply says that a
plot of X; ¢rs VS X .¢¢ Should fall on a universal
straight line, whose slope is equal to a;/a;. It
is interesting to note that to O(e°), Egs. (3) and
(4) imply that the effective exponents obey all the
thermodynamic scaling relations (e.g., 0/q¢¢+
+2Bcss+Verr=2), but not those of hyperscaling
(e.g., a.¢;+dves=2 will have a correction of or-
der Alt|2, resulting from the fact that the mean-
field exponents 2,;° do not obey hyperscaling).
Thermodynamic scaling relations do indeed seem
to be obeyed by many effective exponents.’® A
discussion of experimental ratios is given below.

The result (3) is a direct consequence of the
renormalization-group trajectory integral pro-
cedure recently developed by Rudnick and Nel-
son.!! They considered a Landau-Ginzburg-Wil-
son—type Hamiltonian, of the form

sc= - [ @RGr[SI2 +3|A8P +ulS]Y), ®)

and solved the differential recursion relations ex-
plicitly. The parameter « turns out to flow to its
fixed-point value, u* =27°¢/(n+8) +0(€?), accord-
ing to u () =u*/R (1), with R(I)=1+We ™ €}, and W

= @* —u)/u. Similarly, the flow of the tempera-
ture variable, ¢ =7+ (n+2)/47%, is given by t(1)
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=te"Y(Ru/u*)"*"1, where v~1/2+v . For T >T,,
the recursion relations are iterated until [ =17*,
with £(I*) =1, at which point the various thermo-
dynamic quantities are obtained by perturbation
theory. Since all the lengths in the problem have
been rescaled by e*’, the correlation length be-
comes

Eocet"=17" Ru/u*)'s, (6)
with, to leading order in €,
R=1+Wte2, 7

Similarly one finds for the specific heat and for
the susceptibility™

C=(A,/a)l °R**1+Cyz, x=Tt 'R*"1, (8)

with @ ~a,€, y~ 1+y,€, etc. Note that the same
factor R enters into all these correction powers.
It is this term that gives the logarithmic correc-
tions (e.g., C o |Int|2%1) at €~ 0. For small ¢,
R?¥1 can be expanded® to yield 1+2y,Wt*, thus
identifying A =€/2+0(€®) and a,* =2y, W +O(e).
For T <T, one determines /* from*! ¢ ([*)= -3,
so that e~ " ~ (= 2t)¥?, Since 2¢?2= 1+0(e), the
zeroth-order results remain unchanged. The
factor 2<% should however appear, together with
other factors, in the order-¢ corrections to ra-
tios like a;*/a;”. In summary, our zeroth-order
results are

ac+=ac-:201W=i:gW,
- n+2
(9)
- 1n+2
at=a, =2v,W 2n+8W’
==2 W——3——W
@u==2 “n+8

with W being a nonuniversal parameter.

It is interesting to note that to the leading or-
der we have, e.g., y,= —v%/€, B,= (B-5°/€
with %=1, g°=% being the exponents’ mean-field
values.'* This is the source of Eq. (3). There is
a priovi no reason to expect that the O(e) terms
in Eq. (3) vanish. In fact Chang and Houghton®
find nonzero O(e) corrections.’* Since extrapola-
tion to € =1 is ambiguous, one can obtain two al-
ternative estimates for a;/a; by either (a) use of
Eq. (9), or (b) use of Eq. (3) [without the O(e) cor
rections] with the actual asymptotic exponents
taken from Ref. 4. The difference between the
two should be viewed as an estimate of the uncer-

tainties. For instance, Eq. (9) yields a,*/a,* =3,
whereas Eq. (3) yields a,*/a," ~0.55, somewhat
closer to the corresponding series value.®

To lowest order in €, Egs. (3) and (4) immedi-
ately give all the thermodynamic scaling rela-
tions among effective exponents. However,®*?

2 _aeff—dyeff': (2 —d/2)a§A|t| A/(V -_ %)
~WAlt| 2 +0(?).

The next term in the expansion of R?’1 is™®
v,(@2v, - 1)W?|¢|**, and one can easily find univer-
sal relations among these higher-order correc-
tions. Note that our statements about scaling re-
lations among effective exponents still hold.

The same kind of ratios may be derived for any
problem which involves € expansions. For ex-
ample, m-component dipolar magnets should
have's

ac*/ay*=m*=2m —4)/(m +2)* +0(€)
=a/@y -1)+0(),
ay/ay” =4+3m)/m +2) +0(€)
== (8-2)/(y =1)+ O(e).

Similarly, the corresponding quantities in the
percolation problem should have,' e.g.,

_aM/aC- =ac+/ax+=1+0(6—€). (11)

We now turn to a review of the experimental
situation. Whenever we quote ratios based on
the actual asymptotic exponents );, we take these
from the perturbation-series calculation.* High-
and low-7T series and extrapolated e-expansion
values are not significantly different.* Reason-
ably accurate direct measurements of ratios like
a;/a ; are currently available only for the super-
fluid transition in *He,™!” where one has ac*/ac”
=1.29+0.25. We predict 1+0(e). (See also Ref.
9.) The same work'” gives ac™/a,, [p, is the su-
perfluid density, which behaves as |¢|*(1+a, [¢]*),
with £ = —2)v] in the range —0.13 to - 0.21."7
Since the relation ¢ = (d - 2)v involves the dimen-
sionality, one does not have a, = 2-d)a;. In-
stead, Rudnick and Jasnow'® find that to leading
order p,=M?, including all the corrections. Thus,
a,,/ay=2+0(€), and we predict ac™/a, =4 -n)/
6+0(e)~+% for n=2. The real exponents? yield
ac"/a, ~-0.03. Clearly, better experimental
and theoretical values are needed.

Recent measurements near the liquid-gas criti-
cal point of *He have yielded'® a,/a,*=0.41£0.2,
from a fit with a single confluent correction term
and |t| < 1072, Here, the uncertainty includes the
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TABLE 1. Experimental effective exponents and
correction-to-scaling—amplitude ratios.

Befr Yeff ay/ay’
He? 0.358 1.168 0.46
‘He? 0.356 1.188 0.59
Xe? 0.350 1.211 0.86
co,? 0.349 1.199 0.58
H20“ 0.350 1.225 1.60

0.353 1.190 0.56
“Avg 0.355 1.19 0.60
*He 0.35 1.19 0.50
Ni¢ 0.378 1.34 0.29
Euo? 0.368 1.29 0.03
Pd.Fe® 0.444 1.17 0.37

21iquid-gas system (z = 1), Ref. 20.
b Liquid-gas system (z = 1), Ref. 19.

¢ Ferromagnet (z = 3), Ref. 21.
dFerroma\gnet (n = 3), Ref. 22.
Ferromagnet (n = 3), Ref. 23.

f Left-hand side of Eq. (4), with A; from Ref. 4.

effects of systematic errors in 7,.'° We obtain
1+0(€) [Eq. (19), n=1] or 0.175/0.24=0.73 +0(€)
[Eq. (3), exponents from Ref. 4]. The agreement
is reasonably good.

There are a number of other experiments which
yield effective exponents, but by themselves do
not have the resolution to yield the amplitudes a;
directly. For these, we compare the left-hand
side of Eq. (4) (with »; from Ref. 4, see last col-
umn in Table I with Eq. (9), or Eq. (3) with the
A; of Ref. 4. The experimental results for a,/a,
are summarized in Table I. The liquid-gas criti-
cal points yield, on the average, a,/a,= 0.6 (the
result for H,O appears anomalously high), where-
as we predict 1+0(e) [Eq. (9)] or 0.73 [from Eq.
(3) and the exponents of Ref. 4]. The agreement
with our second estimate is remarkably good.
The last three rows in the table correspond to
Heisenberg systems (n=3). For Ni and ordered
Pd;Fe, a,/a, is distinctly different from the lig-
uid-gas case, but in good agreement with our es-
timate 0.35 based on the exponents of Ref. 4.
From the € expansion we get §+0(e). The re-
sults for the ferromagnet EuO do not seem to fit
very well into the same category as Ni and Pd,Fe.
Perhaps this is attributable to the dipolar inter-
actions which are more important in the case of
EuO; Eq. (10) with m =d=4 —€ gives a,/a, = %
+O(e) which is smaller than the value aM/ax =3
+0/(€e) resulting from Eq. (9)! Also, the dipolar
exponents ); may differ from the short-range
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ones* used here.

For a,”/a,” , the left-hand side of Eq. (4) (with
; from Ref. 4) and experimental data for X; .
for the liquid-gas critical point®* of SF yields
0.67. Our estimates, given above, are 0.5 and
0.55.

In general, our ratios seem to be in reasonable
agreement with measured effective exponents. It
should be noted that we did not include measure-
ments which were done very close to Tc,25 since
the correction terms there may be too small,
and the resulting errors in ratios like a;/a; too
large.
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Correction-to-scaling amplitudes are calculated to second order in € =4 —d by renor-
malized perturbation theory. I is shown that ratio of any two such amplitudes is univer-
sal, and that thermodynamic scaling laws among effective exponents break down beyond
zeroth order in €. Values found area.*/a,*=0.65 (n =1, d=3) and 0.63 (n =2, d = 3)
in good agreement with high-temperature series, and a," /ax’“ =0.85(n=1, d=3).

Several years ago it was realized both experi-
mentally' and theoretically® that analyses of data
taken near to a critical point should include “cor-
rection-to-scaling” confluent singular terms. A
thermodynamic quantity f; should therefore be
written as®

Fi= AN 1alt]2 +o(lt129], (1)

where ¢ =(T - T,)/T,. Experimental results, which
are fitted to the pure power law f;=~ A; .¢¢ " M yeff)
will therefore yield values of \; (¢ as®

A eff =T>‘i'_aiA|ti|Ao (2)

The leading critical exponents A; and correc-
tion-to-scaling exponent A are now known with
high accuracy via € =4 - d expansion, supplement-
ed by knowledge of the asymptotic behavior of
perturbation series,’ for example A =0.493, 0.521,
and 0.550 for » =1, 2, and 3 component systems,
respectively® (d is the space dimensionality and
n the dimensionality of the order parameter).

There is also considerable theoretical information
available on the universal relations among the
leading critical amplitudes™ ®%; however, only
recently has much experimental!®*!! or theoreti-
cal attention been paid to the ratios among the
correction amplitudes a;. High-temperature
series'? suggest that a;"/a,” is universal (¢ and
x are the correlation length and susceptibility;
the superscript “plus” means T> T,) with values
0.70+0.03 (2 =1) and 0.6+ 0.1 (z =2). The present
authors®® established the universality and calcu-
lated a,*/a,” (c is the specific heat; the super-
script “minus” means 7 < 7,) to order €?; they
found a value of 1.17 for n =2, d =3 which agrees
quite well with Ahler’s?:!° experimental value

of 1.29+ 0,25 for “He on the lambda line. More
recently Aharony and Ahlers® have observed that
to leading order (zeroth order in €) one has

ai/aj=(>\i"7\io)/(>\j‘>\jo), (3)

where 1° are the mean-field values of the expo-

785



