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The velocity autocorrelation function is measured directly for the first time for one
Brownian test particle in nitrogen at two different densities. The persistence of the
autocorrelation is more pronounced than predicted on the basis of the modified Langevin
equation. The measured distribution for the Brownian displacement shows a consider-
able departure from the Gaussian distribution at both densities.

The 1967 discovery by Alder and Wainwright of the slowly decaying nonexponential tail of the velocity
autocorrelation function of hard-sphere molecules as revealed in molecular-dynamics computations
has led to a Qurry of theoretical activities. ' On one hand, correlated binary collisions or ring events
have been established as the reason for this apparently non-Markovian behavior, and basic reformula-
tion of the kinetic equations has been effected by means of the ring diagrams. On the other hand, the
persistence of the autocorrelation has been attributed to the hydrodynamic modes of the Quctuating
Qow field around the test molecule. The successful derivation of the Stokes law as well as the Basset-
Boussinesq correction term by means of the repeated ring events' points to certain compatibility be-
tween the two viewpoints. In this Letter we present the first directly measured Brownian velocity au-
tocorrelation function from a new experiment, which has been in the making since 1975.

It has been implied that the developments in the molecular Quctuations hold for the Brownian motion
except for parametric differences. The success with the modified Langevin equation supports this no-
tion'.

m =-$(p, R) v ——pR' —6R'(s prt)'t' (t -s) '~'ds+ f(t),
d~ 3 d~

where the Stokes-Cunningham coefficient $ (p, R)
becomes 6mgR (stick) or 4srtR (slip). The nota-
tions of Ref. 4 are used for other symbols.

The situation is tluite different in the (labora-
tory) experimental front. The first~ of the four
reported experiments consisted of testing the
validity of Etl. (l) through exploitation of the lim-
iting behavior of Etl. (l). While the result was
found consistent with Eq. (I), including the
(time) ' ' tail, it is unsatisfactory to examine
such a fundamental phenomenon with data requir-
ing interpretation through the phenomenological

Etl. (l). In the three other experiments, ' conse-
quences of the Alder-Wainwright effect in trans-
port properties had been searched for. Results
indicated certain nonclassical behavior of the
velocity autocorrelation function but failed to
give details as to the exact nature of the behavior.
We note that in these approaches it is not possi-
ble to measure the function directly and independ-
ently.

The experiment has proven to be difficult but
the experimental approach is straightforward:
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We suspend a single Brownian particle in a ceQ
containing a gas and measure a horizontal com-
ponent of the Brownian velocity successively in
order to construct the autocorrelation function.
The velocity component is determined by meas-
uring the displacement of the magnified image
of the particle during a time interval which is
smaller than the characteristic relaxation time
of the test particle in the host medium. The dis-
placement is obtained from the change in the to-
tal intensity of the particle image transmitted
through a neutral-density wedge filter situated
at the image plane.

Figure 1 shows details of the Brownian cell and
the high-pressure vessel. Particles in the settl-
ing chamber are let into the cell by sedimenta-
tion. The single test particle selected in the next
hour or so is retained for measurements at dif-
ferent densities for up to 15 h by continuous sur-
veillance with three video cameras. The density
of the gas is varied by changing the pressure in
the vessel. The rate of pressurization depends
on the extent to which the test particle can be
controlled by the electric field and has been in
the range of 2 to 5 atm/h thus far. After a de-
sired pressure is reached, the test particle is
moved about in the cell in order to ascertain full
decay of eddies created in the gas by pressuriza-
tion before starting the measurement. The meas-
ured long-term leak rate of the vessel is con-
siderably less than 2 &&10 4 Torr/sec at 20 atm.

The particle-position data are taken in files of
2019 points each at the rate of 20 MHz and this
means that the test-particle velocity, as approx-
imated by the displacement during 50 nsec is ob-
tained independently once every 100 nsec. In
each run, typically 1000 such files of data are
taken and stored in a PDP-11/34A minicomputer.

Because of the limited photon Qux and even
smaller photoelectron count rate, the position
detector output consists of high-frequency, large-
amplitude (rather than expected small-amplitude)
fluctuations superimposed on a low-frequency
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FIG. 1. High-pressure vessel containing the Brown-
ian cell and particle-settling chamber: (a) a side view
and (b) a top view. Various components within the ves-
sel normally experience no pressure gradient. During
the period of data collection, the Brownian cell of 3
cm~ in volume is sealed vacuum tight and all six elec-
trodes are grounded to the cell body.

background signal corresponding to large-time-
interval displacements. The net result of this ap-
parent or pseudo noise introduced in the data is
to m, ake the small-time displacements very large
and introduce a negative autocorrelation at times
comparable to half the periods of the high-fre-
quency pseudonoise part.

The final method adapted to overcome this dif-
ficulty is to apply a q-point running average on
each N-point data file to end up with an (N q)-
point data file before processing the full run.
For values of q such that q6T is large in compar-
ison with the pseudonoise periods, where &T is
the time between two successive position meas-
urements, the pseudonoise contributions average
out to an addititive constant. The velocity is
then actually an average of two Brownian veloci-
ties separated in time by q&T, and a typical term
appearing in the sum for computation of the auto-
correlation function is as follows:

4 [v (T) + v (T +AT)] [v (T + t) + v (T + q6 T + t)]
=—,[v (T)v (T + t) +v (T + q6 T)v (T + q5 T + t ) + u (T + q5 T)v (T + t) +v (T)v (T + q5 T + t)], (2)

where T is the laboratory time of measurement
and t the correlation time. Upon taking of an
ensemble average, the first two terms on the
right-hand side become identical, giving rise to
the value of the autocorrelation function at I'. The
last two terms also become identical to each

other but vanishingly small in comparison to the
first two because q&T is generally much larger
than the range of t considered here.

The above conclusions are exact in the limit of
Extensive numerical simulation using
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randomly generated numbers bears out all of the
conclusions. The situation is somewhat different
for the actual experiment in that N =2019 in each
file. Both the experimental uncertainty and long-
time correlation increase as q exceeds signifi-
cantly a certain range. In other words, there is
no sharply defined criterion for choosing the
length of the running-average interval, although
a plausible range is identifiable.

In order to overcome the ambiguity associated
with the ruining-average technique under the
finite sample-size condition, measurements are
made for each test particle at two different gas
densities. The run under the standard gas condi-
tion is first processed to find an optimum q value

(q,) such that the resulting velocity autocorrela-
tion function best fits the solution of Eq. (1). The

higher-density run is then analyzed using the qo-
point running average and the result compared
with the solution of Eq. (1) at that density.

Two sets of measurements for one Brownian
test particle, consisting of four runs each at two
different densities of nitrogen, are summarized
in Fig. 2. Each run consists of approximately
1.8 million position measurements. The four
resulting velocity autocorrelation functions at
each of the two densities have been averaged and
the average is plotted as a function of the dimen-
sionless tiine t/v'~, where v~ is obtained by best
fitting the short-time portion of each autocorre-
lation function (either theoretical or measured)
with exp( —t/r~). A running average of qc =125
has been performed in each run.

There is a systematic discrepancy between the
measurement at 1 atm and the theory for t 23.5~~
in spite of an effort to optimize the fit. The dis-
crepancy does not seem accidental: Firstly, a
similar trend is seen at the higher-density run.
Secondly, when one examines pn(&) as the solu-
tion of Eg. (1) in the long-time regime, it dis-
plays the asymptotic (t/v~) '~' tail by breaking
away from the intermediate-time trend in the
manner rather similar to this. Thirdly, the
measurement at the higher density indeed shows
the deviation taking place earlier in &/r~ than
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FIG. 2. Normalized velocity autocorrelation function
[pD(t) ) of a Brownian test particle in nitrogen at two
densities as a function of the dimensionless time tl~& .
Measurements (circles and squares) are compared
with the solution of Eq. (1) I.see Eq. (3i) of the first
paper in Ref. 4l . A power-law fit (dotted line) to the
higher-density data reveals the earlier-than-expected
appearance of the asymptotic behavior. The indicated
experimental uncertainty is determined by the point-
by-point mean diviation among four runs. This is con-
siderably larger than the combined systematic error
from laser heating and convection due to pressurization,
as judged from the measurements under varying con-
ditions of the laser intensity and post-pressurization
waiting time. The systematic error due to the meas-
ured leak rate is less than 10 "' in pD(t) .
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FIG. 3. The distribution of the measured Brownian
displacement during &T, relative to the Gaussian dis-
tribution, fG, as a function of the dimensionless dis-
placement Ax/(Ax~)~ ~. Results from the same data
used in Fig. 2 are shown. About 0.9 million displace-
ments are used to obtain the distribution at each of the
two densities: 1 atm (circles& and 11.35 atm (squares)
at 293 K.
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the atmospheric-pressure measurement, as pre-
dicted by the theory.

In Fig. 3 we show the distribution of the x com-
ponent of the Brownian "velocity" (i.e., displace-
ment &x during 6T), from two of the eight runs
used to obtain the results in Fig. 2. In both cas-
es, the distribution is narrower near the center
and wider in the wings than the Gaussian. This
feature is in qualitative agreement with an earlier
ad hoc prediction. A similar behavior has been
seen in a recent two-dimensional molecular-dy-
namics computation for a Lorentz gas. ' In the
wings, the measured distribution intersects the
Gaussian at different places depending on the
density.

We note that the Brownian "velocities" are un-
determined to a constant factor as a result of the
running-average procedure itself. Also it has
not been possible to measure the particle radius
independently and accurately because the radius
is considerably smaller than the practical wave-
length range of light and the Brownian motion is
very strong. However, the following estimates
point to a degree of self-consistency between ob-
servations. The mean square displacement (from
the data of Fig. 3) has been observed to decrease
with increasing density. The measured ratio of
the 11.35-atm over 1-atm value is 0.59, which
gives the particle radius of 0.11 pm according
to the Millikan rule. ' From the particle relaxa-
tion time of the 1-atm runs, one obtains an es-
timate of 0.10+ 0.01 p, m. The sedimentation ve-
locity gives another estimate for the radius of
0.11+0.015.

Our measurement shows that the Alder-Wain-
wright effect is overall more pronounced than
thought possible for the Brownian motion. The
exact reasons for the observation, particularly

the early appearance of the asymptotic tail, are
not understood.
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