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Dynamic Confinement from Velocity-Dependent Interactions

M. King and F. Rohrlich
Department of E%ysics, Syracuse University, Syracuse, Nezv York 13210

(Received 7 December 1979)

Consideration of a new class of interactions is proposed. These contain certain veloc-
ity-dependent terms which lead to confined sytems by not permitting scattering. The
relativistic two-body system is discussed as an example. Applications to quark-quark
interactions are conceivable.

Phenomenological models of mesons as quark-
antiquark bound states are currently of great
interest. The usual approach is to reduce the mo-
tion of a pair of quarks to an equivalent particle
moving in an effective potential. This potential
is chosen to be a function of the relative quark
separation only and to increase in such a way that
it confines the quarks dynamically. '

Quarks in hadrons are known to be relativistic.
Therefore, velocity-dependent interactions can-
not be ruled out. This is especially true when the
phenomenological interaction is viewed as an
effective interaction obtained from quantum
chromodynamics (QCD) when all but a finite num-
ber of degrees of freedom are frozen. For this
reason we have been studying N-body, relativistic,
direct-interaction dynamics" and have been led
to consider an unorthodox interaction that depends
upon the particles' relative positions and mo-
menta. We have solved the equations of motion
of the two-body case and have found the class of
interactions for which scattering solutions are
not permitted.

There is another, more fundamental reason
for studying direct-interaction dynamics. It has
been proven that under rather general conditions'
relativistic Hamiltonian direct-interaction dy-
namics for an N-particle system requires many-
body forces in order to permit a cluster decom-
position. Therefore if one insists on pairwise

a= Q y, /2m, ,
a =1

where

and

X a
= ~a ™ao+ V'(5» ~~) = Ra™ao~

m, = (7i, + m„')'t',

q, = const &0.

The y, are constants because &, + &, = 0 in the
c.m. frame and therefore j,=0. The symbol
=means "weak equality" in the sense of Dirac. '
The Hamiltonian generates evolution with re-
spect to a parameter 7 which is chosen to be the
proper time of an observer comoving with the

interactions only, a cluster decomposition seems
impossible. A consistent direct-interaction
theory can then be constructed only for confining
forces. This is somewhat analogous to gauge
quantum field theories where the infrared struc-
ture prevents a cluster decomposition. and brings
about confinement. '

We start with the general covariant N-body
Hamiltonian dynamics of Ref. (2) and specialize
to the case y, = y, for two particles with unequal
masses. The internal dynamics of the two-body
system can be expressed in terms of the positions
and momenta $„v,(a = 1, 2) relative to the center
of momentum (c.m. ) with use of the Hamiltonian
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center of the system. $, and v, obey the canon-
ical equal-time bracket relations:

2

Vi~+ m ~()

la ( 1
2 1

+ my 0

The reduction of the motion from two particles
to that of one equivalent particle is performed by
working in the c.m. frame where the sum of the
internal momenta vanishes; thus we define

7T 7T $ 7T2

and therefore

~l ) gkl

The equivalent Hamiltonian is

H = y/2m,

where

y = ~'+ m, '+ y( (, ~) = q+ m, ',
(q+ m ')'~' (q+ m ')'~'

a, b = I, 2; 0, / = 1, 2, 3 .
Despite the fact that the kinetic energy term

looks nonrelativistic, this is a relativistic Hamil-
tonian as can be seen by calculating the veloci-
ties in the noninteracting case q = 0:

~.= f ~., Hj= ~./(q. +m. ,')"',

These imply the harmonic oscillator equations
~ 0

~=- -'p'("-p'(~-)')~=- '~,

where

m -'p'-q

The equations of motion have as solution

)=i p 'sinew- j Jq '~'cosmic,

v =1 'I) /cos(dT.

The unusual energy dependence in ~ and the solu-
tion for 7T both emphasize differences between
this solution and that of the well-known isotropic
three-dimensional harmonic oscillator. The con-
stant angular momentum vector has been used to
choose the x-y plane as the arena of motion (J
= zk).

The meaning of the strange T dependence of 7T

is the following. Since the "no-interaction theo-
rem" of Currie, Jordan, and Sudarshan' it has
been known that the canonical variables are not
always to be identified with the physical variables,
and may in fact not be simply related to them.
Here the canonical 7T diverges twice each period
while the (relativistic) physical momentum,
= m$, is well behaved. In terms of this physical
momentum, the Hamiltonian (3) with the interac-
tion (4) has the form

v, '+ m, ' p' (( ~ w, )' q+ m, '
2m 2m (1 —P'P) 2m

and

m '=(q+m ')' '(q+m ')'' —r)
Of course, $ and v&h&, a.re not canonical conju-
gates:

y = p'(E ~ ~)',—p = const. (4)

The equations of motion of the equivalent particle
are

g=m-'[~- p'(t ~)&]

7T=m '
7T 7T .

9 91 02&

m is a generalization of the reduced mass and m,
is the rest mass of the equivalent particle. In
general, both of these masses depend upon the
interaction via g.

After these preliminaries we now turn to the
proposed interaction. The prototype of the new
class of interactions is

f (k ~ l) gkl p2(k (l

A 7T

In view of the divergence of the canonical 7T,

we have solved the above system in Hamilton-
Jacobi form as a check on the internal consis-
tency of the theory. The principal function S is
found to be differentiable throughout the entire
motion. Therefore, the canonical momentum is
single valued and well defined.

Having thus established that the unconventional
intera, ction (4), which depends on the canonical
momentum, results in a confined motion similar
to that of an isotropic harmonic oscillator, we
considered the following generalization:

v(& ) =(&')'~(P). I(&').
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The equations of motion that follow from (5) are

'["(~ ~ )K],
«=-(I/m'g')(E+ J' —7'E ) ~,

(oa)

(ob)

(6c)E(&') -=(I+B&')[(n- V) &'- ~'i,
where the prime denotes the derivative with re-
spect to $'. For finite (', the solutions are
periodic and lie in distinct physical regions de-
fined by

1+BE' & 0,

V —J'/(' &0

(7a)

(7b)

The number and size of these intervals depend
upon the detailed form of B and V. B and V are
restricted by a relativity condition (necessary for
velocity-dependent interactions),

(I/~')(E~ J') &4m', (8)

to ensure that $ be the spatial components of a
timelike four-vector.

The solutions of the generalized interaction (5)
have been examined for scattering solutions. The
general solution partitions into five cases de-
pending upon the large-$' behavior E„($') of
E(&'):

(A) E„($')&0. There is no physical region for
large $' and therefore no scattering. The sys-
tem is confined. This case includes the proto-
type interaction.

(B) E ((') &0, E ($') -0. These are "pseudo-
scattering" solutions in which the equivalent par-
ticle approaches infinity, slows down, and stops.

(C) E„((')&0, E„($')-($')", 0 ~n &1. The
Hamilton-Jacobi principal function S has a cusp.
It is continuous but not differentiable and, as a
result, the canonical momentum is not single
valued throughout the motion.

(D) E„((~)&0, E„($')—$'. These are (genuine)
scattering solutions where the motion is that of a
free particle for large

~ $~. This motion can arise
only if both B and V fall off fast enough:

B„(~')-(I/~') ',

V (&')-(I/&')', p.-0,
for large g'. Scattering from a short-ra, nge po-
tential with no velocity-dependent term (B=0, V
-0) is a trivial exa, mple of this case.

(E) E (k') o, E-(r') -(('), 1 (I/5') '
&& E„($') diverges for large $' and therefore vio-
lates the relativity condition (8).

Qf these five cases only two are acceptable as
physical solutions —cases (A) and (D). Ca.se (E)

[v' —p'(~ v).,d' —v(~')] e= rjk. -(9a)

For small ( one can assume that the confining
interaction is negligible compared with V (e.g. ,
if V is of the Coulomb type). For large

~ $~, if V

vanishes and therefore gives scattering states in
the absence of the confining interaction, one now

has already been excluded on physical grounds.
Case (C) is unacceptable since the canonical mo-
mentum must be single valued in order that the
theory be self-consistent. In addition, solutions
of case (C) and of case (B) can be excluded from
general consideration because they can arise
only in the very special case when the leading
term of B„(g') is precisely —(I/(') for large $'.

The solutions of cases (A) and (D) lie in distinct
physical regions E((') & 0. These solutions are
distinct because if the equivalent particle initial-
ly lies in one region it will remain in that region.
If it is a, finite region [case (A) or (D)], the par-
ticle will undergo periodic motion. If it is an un-
bounded region [case (D) only] then the particle
will undergo scattering. Cases (A) and (D) can
exhibit an angular momentum barrier [E(0)= —J'
& 0] only if

B($') -(I/5'), ~&1, V(&') -(I/5')', 0&1,

for small $'. This is consistent with case (D)
(scattering) only if B=O and 0 ~ p&1.

Concentrating on the confining case, (A), con-
sider the interaction (5) when B= —P'&0 and V(~)
vanishes for large

~ $~. Asymptotically, then,

E (&') =(-qP')&'.

The solution is confining [case (A)] if q&0 and is
unphysical [case (E) ] otherwise.

Limits of the motion are given by the positivity
conditions (7a) and (7b). Equation (7a) gives the
upper bound of the motion $' &1/p' while the low-
er bound is given by (7b),

rl=( + '/5 )i&& ~

The form of V is restricted by the positivity of g
in (7b) and by the relativity condition (8). These
restrictions require that V($') be positive for all
physical $ '.

These classical considerations can now be ex-
tended to relativistic quantum mechanics. The
canonical quantization of (3) is straightforward
and the ambiguity in ordering of the first term
in (5) (we assume again B= -P') only involves a
trivial constant (see below). In the c.m. frame
the relativistic Schrodinger equation looks non-
relativistic:
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obtains a square-integrable wave function because of P' g0.
An expansion in spherical harmonics of the type 8, y, /$ leads to a, radial function

where u, (t) satisfies

+ [ I + +a f (~ —+) ]u )
' + + [v(v + 1) —co —(& + 1)(I + 2) ]u, = 0

with u'(t) = V($ )lp', and v(v+1) =c+7)lp'. The constant c depends on the choice of ordering and is con-
ve»entiy chosen to be — . Asymptotically, for large $, u, becomes a hypergeomeiric function

u(t) - i ' "'""',E,(2(i+v+2), —,'(v —3+1), u+-,',
which is in L'([0, ~), f'" 'dt ) for v & ——,'. The de-
tails of the spectrum depend, of course, on the
choice of V.

The result (10) shows that the quantum-mech-
anical confinement produced by (4) is weak; the
wave functions do not fall off exponentially, but
only like a power. Application to quark binding
is therefore expected to include additional con-
fining interactions contained in V. But there is
no reason to exclude interactions of the form (4)
from a relativistic phenomenological description.

In summary, we can say the following:
(a) In a relativistic particle theory velocity-

dependent interactions ca,nnot be excluded. For
the two-body system the form (5) of the interac-
tion is essentially unique: Higher powers in &

would violate the second-order character of the
Schrodinger equation, and terms linear in & can
be transformed away by a gauge transformation.

(b) The velocity-dependent term can provide
confinement under suitable conditions [case (A)
above]. In the quantized theory this confinement
is weak. Quark binding is thus expected to in-
volve another confining interaction, too, such as
the conventional linear or logarithmic type.

(c) The proposed interaction term depends on
a canonical momentum which is not the physical
momentum. A similar difference between canon-
ical and physical position has been earlier in the

(10)

context of the "no-interaction theorem". '
(d) The proposed velocity-dependent interac-

tion arises from a certain "gauge choice" of the
Hamiltonian 0 in relativistic N-particle dynam-
ics, viz. when no constraints are admitted in II.
This is discussed in detail elsewhere. '
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