⁵A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974); S.-T. Chui and P. A. Lee, Phys. Rev. Lett. 35, 315 (1975).

 V^6V . J. Emery, A. Luther, and I. Peschel, Phys. Rev. B 13, 1272 (1976); A. Luther, Phys. Rev. B 15, 403 (1977).

⁷V. J. Emery, in Highly Conducting One-Dimensional Solids, edited by J. T. Devreese et al . (Plenum, New York, 1979), Chap. 6.

 ${}^{8}V.$ J. Emery, Phys. Rev. B 14, 2989 (1976); M. Fowler in Organic Conductors and Semiconductors, edited by L. Pál, G. Grüner, A. Jánossy, and J. Sólyom, Lecture Notes in Physics Vol. 65 (Springer, Berlin, 1977).

 9 M. Fowler, Phys. Rev. B 17, 2989 (1978); M. Fowler and M. W. Puga, Phys. Rev. B 18, 421 (1978).

 10 H. Gutfreund and R. A. Klemm, Phys. Rev. B 14, ¹⁰⁷³ (1976); V. J. Emery, Phys. Rev. Lett. 37, ¹⁰⁷ (1976).

 11 H. Bergknoff and H. B. Thacker, Phys. Rev. Lett. 42, 135 (1979); A. Luther, Phys. Rev. B 14, 2135 (1976).

 12 L. D. Fadeev, to be published.

 13 B. Sutherland, Rocky Mountain J. Math. 8, 413 (1978).

 14 We have simplified our algebra by eliminating certain physical constants. To gain a formalism corresponding to the Hamiltonian $H = -2J\sum_i |S_i|^2 S_{i+1}^2$ $-\frac{1}{4} + \gamma (S_i^X S_{i+1}^X + S_i^Y S_{i+1}^Y) - g\mu_B H_M \sum_i S_i^Z$ with k ,
Boltzmann's constant, not equal to 1, make the transform $\Delta \to \gamma^{-1}$, $T \to k_B T/2\gamma J$, and $H_0 \to g\mu_B H_M/2\gamma J$ in all our formulas.

 15 H. A. Bethe, Z. Phys. 71, 205 (1931); L. Hulthen,

Arkiv. Mat. Astron. Fys. 26A, 1 (1938).

 16 M. Gaudin, Phys. Rev. Lett. 26, 1301 (1971).

 17 J. D. Johnson and B. M. McCoy, Phys. Rev. A 6,

1613 (1972); J. D. Johnson, Phys. Rev. ^A 9, ¹⁷⁴³ (1974).

 18 J. C. Bonner and M. E. Fisher, Phys. Rev. 135, A640 (1964); J. C. Bonner, thesis, University of London, 1968 (unpublished).

 19 K. Huang, Statistical Mechanics (Wiley, New York, 1963). We are double counting the $n = 1$ excitations with this procedure. However, the dispersion curve of the unwanted excitations lies higher than the true n $= 1$ excitations. Thus the error is exponentially higher order than the terms we keep in our low-T expansion. ²⁰For larger H_0 and $\Delta \ge 1$, except for an $O(T^0)$ neighborhood of $H_0 = 0$, $\Delta = 1$, our answer is Eq. (4) with the square-root term replaced by $-H_0/2$. E in this. case is exponentially higher order than the integral. All results for $H_0 > O(T^2)$ have no structure and merge smoothly onto the $H_0 \leq O(T)$ results. Therefore, in all that follows we restrict $H_0 \leq O(T)$.

 21 M. Takahashi, Prog. Theor. Phys. 50, 1519 (1973). The author finds for the general XYZ model a lowtemperature result that, when taken to the Ising-Heisenberg limit, agrees with our $H_0 = 0$ result for F . However, his derivation is not valid in the Ising-Heisenberg limit. He also has no finite- H_0 results.

J. B. Torrance, Jr., and M. Tinkham, Phys. Rev. 187, 595 (1969).

 23 C. P. Landee and R. D. Willett, Phys. Rev. Lett. 43, 463 (1979).

 ^{24}P . P. Kulish and E. K. Sklyanin, Phys. Lett. 70A, ⁴⁶¹ (1979).

ERRATA

NEW APPROACH TO PERTURBATION THEORY. Y. Aharonov and C. K. Au [Phys. Rev. Lett. 42, 1582 (1979), and 43, 176(E) (1979)].

Equations (12) and (40) in this paper should read as follows:

$$
-\frac{1}{2}(g^2 - g')e^{-G} = (E - V_0 - \lambda V_1)e^{-G};
$$
\n(12)

$$
F_i(x) = 2\alpha_{i-1} [g_1 + g_0 \alpha_1/(x - \alpha_0)] \exp(-2G_0)
$$

+
$$
\sum_{m=2}^{i-1} \alpha_{i-m} [\sum_{j=0}^m g_j g_{m-j} - g_m' + 2E_m] (x - \alpha_0) \exp(-2G_0) - \sum_{j=1}^{i-1} g_j g_{i-j} (x - \alpha_0)^2 \exp(-2G_0).
$$
 (40)