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The results obtained by series-analysis techniques applied to the time evolution of the
inviscid Taylor-Green vortex support the conjecture that vortex lines may be stretched
an infinite amount in a finite time.

The classical theorems' of Kelvin and Helm-
holtz imply that, in an inviscid incompressible
fluid of constant density, vortex lines move with
the fluid and vorticity is amplified proportional
to the stretching of a vortex line element. These
theorems are central to the understanding of the
dynamics of high —Reynolds -number flows.

For boundary-free flow, the Kelvin and Helm-
holtz theorems imply that an initially smooth,
inviscid flow remains smooth so long as vortex
lines are stretched only a finite amount. Indeed,
the restriction of the flow to two space dimen-
sions precludes vortex-line stretching so global
regularity follows. ' However, in three dimen-
sions, vortex lines can twist, tangle, turn, and
stretch. It is conceivable that flow velocities re-
main bounded and, still, a singularity of the flow
appears spontaneously after a finite time in the
interior of the flow. ' Segments of vortex lines
could develop infinite length by becoming intri-
cately wound up and twisted without the end points
of the segment being separated by an infinite dis-
tance. These properties of inviscid flow have
been the subject of some speculation in the past. 4 '
In this Letter we offer evidence of the correct-
ness of the conjecture that spontaneous singulari-

The initial conditions in real space are"'
v~(x~, x2, xs,' t = 0) = cos x~ slnx2 cosx3,

v,(x„x„x„t= 0) = v,(x„-x„x„t = 0),

v, (x„x„x„t=O) =0.

(2)

(3)

(4)

ties occur in three-dimensional inviscid incom-
pressible flows. While the results to be presented
below are clearly not a rigorous proof of singu-
larity, they provide the first quantitative data
that support the existence of the putative singu-
larity.

Our results are obtained by solving the three-
dimensional Euler equations as power series in
time I; with the simple initial conditions intro-
duced by Taylor and Green. ' The resulting power-
series expansions are analyzed using techniques
developed for the study of singularities in critical
phenomena. ' The flow is the solution of the in-
compressible Euler equations which are, in
Fourier representation, 4

ku, (k; t) . ~ kP,
)

——Z ~ 8 cx
8, y=1.

x gus(p; t)u~(k —p; t) .
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Our approach is to examine the structure of
global flow properties for singular behavior.
The generalized enstrophy and its power series
in t are defined, for integer p, by"

Q, (t) -=Pk" Iu(k, t) I'= P &.'" t'".
k n=O

(5)

TABLE I. Coeffeicients A„~ of the series expansion
(5) of Q&(t) in powers of t~.

(1)

AN

(2)

AN

(3)

A„
(4)

AN

0 7,50000x10 1

1 7,81250xlO 2

2 5.91856x10
-2,78436xl0-4

4 6.10482x10 5

5 -9.63613x10

6 1.23765x10-6

-1.30017x10 7

8 1.15077x10-8

9 -4.06899x10 0

10 -1,57226x10 0

ll 5.64571xlO

12 -1.36969x10 11

13 2.99202x10 12

14 -6.19920x10 13

15 1.24509x10 13

16 -2.47745x10 14

17 4.92528x10 15

18 -9.77190x10 16

19 1,93754x10 16

20 -3.85060x10 17

21 7.67013x10 18

22 -1.53011x10 18

2.25000x100

8.59375xl0 1

1.83535xl0 1

1.78070x10 2

3.54517x10 3

1.00989x10 4

3.88235x10 5

2 23680x10 6

-7.27553xl0 7

3.00295x10 7

-8,30095xlO 8

2.02138x10-8

-4.59369x10 9

1.00820x10 9

-2.14055x10

4.4376lxl0 11

-9.08095x10 12

1,83786x10 12

-3.68247x 10 13

7.33436x10 14

-1.4552 lx 10 1'4

2.87657xlO 15

-5,67226x10 16

6.75000x 100

7.57812xlOO

3.86707xl00

1,09499xl00

2.90691xl0 1

6,27515)(10-2

1,51507xl0-2

3,01585x10-3

4,45824xlO 4

9.56613x10 5

3,40805xl0-6

2.73360x10 6

-3.20748x10 7

1,05275x10 7

-2.14857x10 8

4.8054lx10 9

-9.90282xl0 0

2,02179x10

-3.98009x10 ll

7 60907xl0 12

-1,41005xl0 12

2.51732xlO 13

-4,28522xlO 14

2.02500xl01

6,27344xl01

7.30880xl01

4.21618x101

1.78215x101

6.88633xl00

2.66539xl00

9,07388x10 1

2.65742x10-1

7.25449x10 2

1,62495xlO 2

3.64934x10 3

6,17595x10 4

l.18878x10 4

1.37210x10 5

2.625 10x10 6

1.24648xl0 7

4 79322x10-8

-2.23338x10 9

9.96301x10

-1,02271xl0-10

1.56825x10 11

1.06314xlO 13

Notice that Q,(t) is twice the kinetic energy while

Q,(t) is the enstrophy (half the mean square vor-
ticity). For smooth inviscid flows, Q,(t) is con-
stant, so singularities can only show up in the
power series for Q~ with p&0.

Taylor and Green' calculated analytically the
power-series coefficients of the solution to (1)—
(4) to order t' and the coefficients of Q, to order

Van Dyke" computed 0, to order t' numer-
ically. These low-order expansions give no hint
of a possible physical singularity. In order to
explore the analytic structure of the flow, it is
necessary to go far beyond.

We have calculated Q~ to order t" for p ~4.
The expansion coefficients A„~ for the solution
of (1)-(4) are obtained by calculating time deriva-
tives 8 u(k; t=0)/Bt" with use of (1) recursively.
With the initial conditions (2)-(4), the first non-
zero time derivative of u(k; 0) is of order m
~ max

I Ik„(—1 I. Therefore, computation of
A„~ from (5) requires that time derivatives of

u = 6t/(t'+ 5) (6)

and analyze the resulting series

Q, (t) = 0, (~) = P B„(')~".
n =0

The radius of convergence of the series (7) for
Q~(w) is determined by the image of the physical
singularity at t+'. In Fig. 1, we plot the ratios
x„~)= B„(~/B„, ) for 1 -p ~ 4 as a, function of
I/n.

For p = 2, 3, 4 these ratios decrease monoton-

ically with increasing n and the extrapolation to
n = ~ is consistent with a common intersection at
I/w(t~) = x„=0.19 o7r t~ = 5.2. The ratios r„' ()
appear to be affected by singularities outside the
radius of convergence and the extrapolation to n
= ~ is less well defined, although consistent with

TABLE H. Locations t2 of the smallest positive real
pole of the [N/N] and [N/N+1] Pade approximations
to +f (t) as a function of t

[N/N ] [N/N+ 1]

7
8
9

10

33.72
26.53
26.99
26.99

27.33
27.58
27.23
27.51

u(k; 0) be known up to order 2n —max
I Ik„l —1I.

The nonlinear term in (1) is computed by direct
summation" with 29-digit precision. An analysis"
of the effect of roundoff error indicates that each
computed coefficient A„~) has at least ten signifi-
cant digits. In Table I, we list A„~' (0-n -22,
1 -p -4) to five places.

We first perform an analysis of the series for
Qy as a function of t' using Pade approximants.
In Table II, we list the location t' of the smallest
positive real pole of the [N/N] and [N/N+ I] Pads
approximants to 0,. These results suggest real
singularities for t=+t~, t~ =5.2.

Pad@ approximants to d lnQ, /dt' reveal a com-
plicated analytical structure. First, they show

that the radius of convergence of the series for
0 y

is determined by a singularity at t' = —5. In-
deed, inspection of Table I shows that A„i')/A„„~"
is close to -5 for large n. Second, these Pads
approximants indicate other singularities at t+'
and near t' = —5.9 + i3.5, t' = 1.0 + i6.7, and I,"= -9.
In order to focus on the apparent physical singu-
larity at t~', we perform the Euler transforma-
tion
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FIG. 1. A plot of the ratios r„e defined in Eq. (8} vs
1/n. The solid curves are piecewise quadratic polyno-
mial fits to the discrete data.

y, =0.8+0.1, y2 =4.2 +0.3, (9)
y, =9.9+0.5, y4 =16+1.

The value of y, is obtained by analyzing the series
for 0,'; the result is insensitive to the power k
~ 3 used for the analysis. -"

At this point, we again raise the question of
numerical precision. With the assumption that
the critical exponent y, at t+ is roughly 0.8, the
contribution to the coefficient A» ' from this
singularity is then about 10 "times smaller
than its contribution to A, '. For y2

—4.2, y3
=9.9, and y4 =16, the corresponding factors are
about 10 ~, 10 ", and 10 ', respectively. Since
our calculations are accurate to about 10 ", we
infer that the ca,l.cula. tions become unreliable for

a value r„=0.19V. Analyzing instead the expan-
sion of [Q,(t)]", 4=2, 3, 4, . . . , in powers of w

leads to ratios which can be extrapolated with
confidence. The ratios for k =6 are also plotted
in Fig. 1. The extrapolation is insensitive to the
value of k and consistent with a common intersec-
tion at r„. The deviation from linearity is min-
imized for k = 5, for which the data almost exact-
ly coincide with r„~ ~ for large n. Lacking analyti-
cal information about the asymptotic behavior of
r„as n- ~, we refrain from quoting an error
estimate for r or t+.

All these results suggest that the asymptotic
behavior of r„ is of the form

r„'~'-r„[1 +(yp —1)/n+. . . ] (n -~),

implying power-law behavior of Q~ near t+ of the
form (t~ —t) ~& with critical exponents

0, at order t", for 0, at order t", while the cal-
culations for 0, and 04 are significant throughout.
The series for [Q,(t)]' (k a 5) is also significant
throughout.

At finite Reynolds numbers R, Q~(t) should re-
main finite for all t &0. Direct numerical calcu-
lations' suggest nearly singular behavior at large
R for t = 6 with Q, (t)/R finite as R - ~ for t z 6.
In fact, the real singularity at t when R =

should split into complex-conjugate singularities
for finite R."

Since the Taylor-Green vortex is a prototype
for vortex stretching, we expect that singulari-
ties similar to that discussed here should develop
spontaneously in general three-dimensional in-
viscid flows. The structure of the flow near
breakdown has important consequences for small-
scale turbulent flow structures and their inter-
mittency. " The present techniques may be use-
ful in this analysis. It may also be productive to
consider the flow near the singularity at t as the
fir st manif estation of turbulence, with excitation
at arbitrarily small spatial scales. ' ' "

The present techniques may extend directly to
the study of the analytic structure of inviscid
magnetohydrodynamics" and stratif ied and free-
surface flow problems. "
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When Zv& /ve & 1, inverse bremsstrahlung results in a non-Maxwellian velocity dis-
tribution for which the absorption is reduced by up to a factor of 2 compared with the
Maxwellian distribution usually assumed. Transport and atomic processes are also al-
tered. Especially in materials with Z &&1, this is significant at lower intensities than
for the well-known nonlinearity for which the measure is vP/v 2.

Light absorption by inverse bremsstrahlung re-
mains attractive in laser-induced fusion schemes,
as compared with absorption by collective proc-
esses which heat a minority of the electrons to
superthermal energies. These electrons preheat
the target core and do not effectively drive an
ablative implosion. To make inverse bremsstrah-
lung competetive it may require that the ion
charge state Z greatly exceed 1. Especially in
this case, but also for Z = 1, I will demonstrate

nonlinear modifications which take effect at lower
intensities than the absorption nonlinearity an-
alyzed many times before. ' ~ A second refine-
ment removes the usual restriction that the light
frequency must greatly exceed the collision fre-
quency.

We reexamine the collisional absorption (in-
verse bremsstrahlung) of intense laser light in
a dense plasma, considering heating and diffu-
sion of electrons of various energies, the evolu-
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