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~In this paper we analyze the electromagnetic and weak-interaction contributions to the (renormalized) quark

running mass m(p ) as well as to the bare mass parameter lim&2 m(P ) in the total Lagrangian. In contrast,
the Cottingham formula yields the order-& perturbation to the quark or hadron mass renormalized only by the
strong interactions. ISee W. N. Cottingham, Ann. Phys. (N.Y.) 25, 424 (1963); W. I. Weisberger, Phys. Hev. D 5,
2600 (1972); A. Zee, Phys. Rep. 3C, 129 (1972).l This quantity is logarithmically divergent and requires renor-
-malization. See J. C. Collins, Nucl. Phys. B149, 90 (1979), and B153, 546(E) (1979). G. B. West, Los Alamos
Scientific Laboratory Heport No. LA-UR-79-1690 (to be published); J. Kiskis, private communication. We wish to
thank M. Dine, G. P. Lepage, and K. Johnson for helpful discussions on this point.

The regularity noted by Harari that the D I = 2 mass differences such as m~~ —m~ p or m&-+ + mz- —2mrp can be
computed in terms of a dispersion sum over low-lying resonances, but that 4I = 1 mass differences such as m&

-m„, mz+ —m+0, m~+ —m~o, m;-+ —m~0 cannot, is due to the fact that the quark-mass contributions cancel for
4I = 2 mass differences. See H. Harari, Phys. Rev. Lett. 17, 1303 (1966).

~S. Weinberg, Phys. Rev. Lett. 29, 388 (1972).
S. Dimopoulos and L. Susskind, Institute for Theoretical Physics, Stanford University, Report No. ITP-626-

Stanford, 1979 (to be published}.
This method is used in J. D. Bjorken and S. D. Drell, Relativistic Quantum I"ieMs (McGraw Hill, New York,

1965). For a more general approach see M. Baker and C. Lee, Phys. Rev. D 15, 2201 (1977).
pWe neglect contributions to m, (p ') beyond one-loop since these are higher order in ~(p p}. Note that by using

the Ward identity for the pqp vertex, we can calculate &m, /&p directly as a function of renormalized quantities,
with an overlapping-divergence-free skeleton expansion. Thus

s(P n(p')m -(p')f n (p') m, &(p2) &

and for large p~, we only require f(0, 0).
TH. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829 (1976); A. J. Buras, J. Ellis, M. K. Gaillard, and D. V.

Nanopoulos, Nucl. Phys. B135, 66 (1978).
BSee for example, G. Nachtmann and %'. Wetzel, Nucl. Phys. B146, 273 (1978).
~Formally, the solution to Eq. (7) is given by the order-& contribution given in Eq. (8) plus a term Am, (q ),

which is the general solution to the homogeneous part of the integral equation

dk~
gyp)(p ) =—,Q~o.s(k }6m(k }

4z ~2 a&

obtained by setting &= 0 in Eq. (7). Since this term has no dependence on &, such a contribution should be incor-
porated into the definition and normalization of m, (P ) rather than the order-& electromagnetic perturbation (f,.e.,
A= 0).

' Alternatively, one could have other irreducible representations of color SU(3) which yield 0&P & 4.
"Ifwe assume that QED is imbedded in a grand unified theory which is asymptotically free, the effects of unifica-

tion will prevent any singularity in n(p'). See H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438 (1974), and Ref.
7.
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Order-o, corrections to the annihilation of e e into hadrons are computed analytical-
ly. We briefly discuss the technique, which involves the extension to noninteger dimen-
sions of Chebyshev expansions. In the energy range 15-30 GeV {five flavors) we find

R =Sgeo {I+n~(|l)/w —0.94[ n~ (q)/P ] + ...},
where e is the momentum-space subtracted strong-coupling constant. Our result agrees
with that of Dine and Sapirstein, and Chetyrkin, Kataev, and Tkachov.

The calculation of high-order quantum-chromodynamic (QCD) corrections to R= o(e'e -hadrons)/
o(e'e —p, 'p, ) is of particular significance in at least two respects. First of all, both the theoretical
and experimental determinations of & involve fewer parameters than an analysis of deep-inelastic
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scattering. The R analysis thus may be a more promising way to test high-order QCD predictions.
Secondly, the perturbative expansion of R as a function of the strong-coupling constant, z, , serves as
a "test" of the theory itself. That is, in order for perturbative QCD to succeed as a theory it is neces-
sary that higher-order terms tend to be smaller than the lowest-order terms.

The problem is, therefore, to calculate R, in

R(s)=3Ze ' )+ ' '
tt (

' ')
where eo are quark charges and vs is the center-of-mass energy of the e'e system. The coefficient
R2 has very recently been evaluated numerically by Dine and Sapirstein and analytically by Chetyrkin,
Kataev, and Tkachov. ' They find a rather large value (p, =7.4 —0.4N& for N& quark flavors) if renormal-
ization is done by minimal subtraction. However, as those authors observe, R2 is renormalization-
scheme dependent and they present their results in a scheme (MS) where 8, is much smaller. We re-
turn to the scheme dependence later.

The complexity of the above computation warrants an independent confirmation. In this Letter we
present an analytical calculation which yields

R2 =f~ g (3) —~ —
@[In(4&) -yz] )Nz +(- 11$(3) + 24' + '4'[In(4))') -yz] },

=7.3587 —0.4409N

(Ia)

(Ib)

in agreement with Refs. 1. We also present exact partial results which serve to check the accuracy
of the numerical integration routines used by Dine and Sapirstein. In contrast to the position-space
technique of Chetyrkin, Kataev, and Tkachov, ' we work directly in momentum space; we also use the
momentum of the virtual photon rather than an auxiliary mass as an infrared cutoff. The calculational
method presented here should prove useful in future high-order calculations and in checking results
such as those of Ref. 3.

We perform our calculation by making use of an N-dimensional generalization of the Chebyshev ex-
pansion technique employed by Rosner and others. ' Since this method is (to the best of our knowledge)
novel we describe it briefly here. The appropriate generalization of the Chebyshev polynomials (i.e.,
polynomials which are orthogonal with respect to angular measure in four dimensions) is the family of
Gegenbauer polynomials C„(x), where o. =(N —2)/2 and N is the number of dimensions of space-time
(occurring in the dimensional regularization program). The fundamental orthogonality relation' is

1 ~ 2'' m+2f dr(1-x') -~' ()C„"()=~„.—
n t (o. +n)[r(o.)]'

from which one derives

2m'- '~2 r(n+ 2 —c)
fdic C„( o 8,)C ( o,)= „,( —

/ ) (
---/-)-~-- ),

where N = 4 —e and

fdic~= f dq $ sin9„,d8„, ~ ~ ~ f sin" 'e, dg, .
These results are extended from integer to noninteger dimensions by simply allowing N to be noninte-
ger in the above formulas. Also of use in our calculations are various addition theorems, as well as
the convolution formula'

~(2- ~j2)
fdQ)))(k) C (k P)c (k (f) & C (jl g)

In the work of Rosner and others, ' one of the key elements is the expansion of propagators in terms of
Chebyshev polynomials. Then the angular parts of Feynman integrals are trivially done by use of the
orthogonality relations [Eqs. (2) and (3) in four dimensions] leaving only simple radial integrals to per-
form. We use the N-dimensional analog of this technique, namely'

-, = —,— P z" G„(z')c„"(k,.k,),
1 1

1 2 & n=0
(4)
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where Z =k(/k). G„(x) are related to hypergeo-
metric functions and can be expanded in powers
of e.' In fact, writing G„(x)=1+tH„(x)+e'K„(x)
+... we compute, for instance,

C9

1 j " 1
" (n+1)x'a„(x)=- 5 —. + g .—.— ——.

2I, , j, , j(j+n+1)

It turns out that for our calculations' it suffices
to know H„g), K&(0), and dK&(0)/dx, where j =0,
1, 2, and 3. After using Eqs. (2) and (3) to per-
form the angular integrations we are left with
radial integrals which involve only powers of the
internal momenta. Those are trivially done fol-
lowing the prescription for dimensional regular-
ization. ' The resulting answers are simple sums
which reduce to f(2) or f(3). [Actually, after a
volume factor is factored out, only f(3)'s appear. ]

The actual calculation which must be done is
described by Dine and Sapirstein' and reviewed
here. For ease of comparison we use their no-
tation. R can be calculated by dispersion meth-
ods' from

E F

(b)

FIG. 1. Graphs contributing to R through order g4

(Ref. 1).

11„,(q) = i(g~q'- q„q, )il(q') = fd xe""(Oi T {J&(x)J„(0))i 0) .
By a renormalization-group argument it can be shown that

8
11(q g 0) =11(p' g(t) 0)+ ——[g'C (&')] dt',

where p, is the mass parameter used in the minimal subtraction procedure, ' f= 21n(q'/p, '), g(t) is the
running coupling constant satisfying g(0) =g, and C, is the coefficient of the simple pole of the unre-
normalized vacuum polarization. After taking the imaginary part of II one finds that the result of ex-
panding the right-hand side of (5) gives

2C„, 1 eaR=sree' 1+ " g'+ —— 3C„—2te, , g'+. . .I,10 10 ~g g =0
(6)

where C» is defined by C, =QC„g". C||and C„are well-known quantum-electrodynamic results. "
&II/Bg i;-, is the sum of the diagrams in Fig. 1(a) and C» is the sum of simple pole parts of the dia-
grams in Fig. 1(b).

In order to simplify the analytic calculation we computed II from II&" noting that II,„"(q)= iq2(3 —e)II(s).
Feynman gauge was used for the @CD propagators. An alternative method would be to extract the co-
efficient of q"q" in individual diagrams. This was the method used by Dine and Sapirstein. ' The two
methods of calculation can be compared only for gauge-invariant sets. We do this in Table I. The
agreement is remarkable.

Setting C, „=3, C,z ——~3, and T(R) = 2, and using Eq. (6), we finally arrive at the value for R, given in
Eq. (1). As mentioned earlier, this value appears to be larger than one would like for a reasonable
perturbative expansion. However, it has been noted"" that the minimal subtraction scheme does not
appear to be optimal for obtaining small high-order coefficients. In fact, in Ref. 11 it was shown that
a more appropriate renormalization scheme is one in which a momentum-space subtraction is per-
formed on the gluon propagator and trigluon vertex. When the subtraction is done in Landau gauge, we
get u~ = o. &„[1+(u ,/m)K(N~) +. . . ], .where K(N~) = 11.9661 —1.1798N~. R can be rewritten in
terms of a, as

2

R(s) = 3+co' 1+ ™mt~ + ' (0.7389N~- 4.6374)
V 7T
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TABLE I. (a) Analytical results for gauge-invariant subsets of diagrams of Fig. 1
compared with the numerical results of Dine and Sapirstein, Ref. 1. Given is the coef-
ficient of 1/e when a factor

~~, ~( ~')(r' )' ~~I, ,&~)~-i I4,|s I2( e')

has been extracted from each subset. (b) The finite part of the sum of Fig. 1(a) when a
factor

has been extracted.

Diagrams

(a)
A+ 8+ E/2

Group
Weight

2
2F

Analytic Result.

119/96 —t: (3) = 0.03753

Ref. 1

0.0376

C+ E/2 +G 2
2F

-7/32 = -0.21875 -0.2177

c c
D+F+H C2 2F 2A

2F 2
—1 + g(3) = 0.20206 0.2015

2F 2A
-41/24 + 3C (3) /2 = 0.09475 0. 0948

K+L 2F -113/108 C + 22/27 N T (R) —0- 0447 C + 0.00679 N~2A F

—0.04458 C2 + 0. 00672 N

(b)
55/48 —g(3) = 0.056224 -0.0564

Finally, it is noteworthy that the order-n, ' to R is essentially the same calculation as the order-z, '
correction to the width F(Z'-hadrons). " Because of the expected large cross section for Z' produc-
tion, it may actually be possible to measure this width to an accuracy of order z, ',"
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This paper describes a search for weakly or semistrorgly interacting particles pro-
duced in the collision of 4.9x 10 28-GeV protons with a thick copper and brass beam
stop. 104 events have been observed; their characteristics are similar to those pro-
duced by neutrinos arising from proton interactions in a 15-cm-thick brass target. How-

ever, compared to the number expected, an excess of 48 events is found with uncertain-
ties of + 10 (statistical) and + 12 (systematic). At most ten events (68lo confedence level)
are attributable to beam losses.

We have searched for directly produced neu-
trinos, neutrinos from the decay of short-lived
(( 10 "sec) parents, or new penetrating neutral
particles produced by 28.5-GeV protons from the
Brookhaven National Laboratory alternating-
gradient synchrotron (AGS) in a thick copper and
brass target. Neutral particles were detected in
our neutrino detector. ' The flux of neutrinos
from the decay of long-lived mesons is suppressed

through the use of such a high-density, thick tar-
get, greatly increasing the likelihood of observ-
ing promptly produced particles in the detector.

For the new-particle search, protons were
transported in vacuum to a copper and brass
beam dump 1.0 m long and 0.3 m' in cross sec-
tion followed by a 30-m-long iron absorber. Two
special runs were made for normalization and
background measurements. In the normalization
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