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The contribution of lowest-order electromagnetic (or weak) corrections to quark masses
in quantum chromodynamics is considered. It is found that each contribution to the run-
nirg mass is calculable from physics well below the grand unified scale, as long as the
number of quark flavors nf is greater than or equal to eleven. The renormalization-
group expression for the running mass is also derived, hy use of Dyson's equation for the
self-energy of the quark.

In this Letter we shall consider the question of
the convergence of the lowest-order electromag-
netic (or weak) contributions to quark and had-
ronic masses' from the perspective of asymptoti-
cally free quantum chromodynamics. With use of
the standard operator-product analysis, it is
clear that the only contributions to the electro-
magnetic shift of the masses of hadrons which
are potentially ultraviolet divergent are those as-
sociated with the perturbative contributions to
the quark masses. '

Surprisingly, we find that if there exist at least
eleven quark flavors, i.e. ,

21 (n~(~ q

33

then the lowest-order electromagnetic and weak
contributions to the quark masses are individual-
ly finite and in principle calculable from physics
well below the grand unification scale. The ori-
gin of this result is the fact that if nf & —",, then
the running mass of quantum chromodynamics
(QCD) decreases asymptotically faster than a log-
arithm, thus ensuring the convergence of a self-
energy integral.

From the standpoint of a unified theory of strong,
weak, and electromagnetic interactions, the con-
sideration of individual perturbative contribu-
tions to the quark masses may in some case
seem irrelevant. For example, Weinberg' has
remarked that in models where after spontaneous
symmetry breaking the zeroth-order contribu-
tion to a certain mass vanishes, but where the un-
broken symmetries still allow the appearance of
this mass in higher orders, the renormalizabili-
ty of the theory guarantees that the sum of all
perturbative contributions is finite in every or-
der of the unified coupling constant.

In the previous case, however, the cancellation
and consequent ultraviolet convergence are not
expected to occur until momenta of the order of
the grand unification scale (p -m, - 10" GeV).
In contrast, if there in fact do exist eleven quark
flavors, then the extra asymptotic convergence
of QCD renders the lowest-order electromagne-
tic and weak contributions to quark masses indi-
vidually convergent at a momentum scale of the
order of the eleventh quark-flavor threshold, pre-
sumably well below the region where grand-uni-
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fication effects or new dynamical couplings of
the quarks must be taken into account. We should
remark, however, that models with dynamical
symmetry breaking contain naturally a soft chi-
rality-mixing insertion, leading to an effective
ultraviolet cutoff which can be made much small-
er than the grand unification scale. '

The proper self-energy of a quark can be readi-
ly computed using the Dyson equation illustrated
in Fig. 1, which reads

&(p) J=2„(.* '.~,D" (&)~"() -( ) ~.(( ()-),
(2)

in terms of unrenormalized vertices and propaga-
tors. Note that the renormalization of this equa-
tion has to deal with the problem of overlapping
divergences. Using the Dyson equation for the
vertex, one can express Z,y„ in terms of the re-
normalized vertex function, and then write Z, Z(P)
in terms of renormalized quantities inside the in-
tegral, with no overlapping divergence. '

We define the "running" mass m(p') as the re-
normalized mass parameter in the off-shell quark
propagator,

~,( )
1 Z(p')

p'- m, —Z(p)+ je p'- m(p')+is

-=Z 'S (P) (3)
and then use Eq. (2) in the Landau gauge, where

the separation of wave-function and mass renor-
malizations is simple because the first one is
trivial (Z,~ = 1). For QCD we get, for large p'
and in leading™logarithm approximation, the ho-
mogeneous equation [Cz = (n,' —1)/2n, =-', ]

m, (P ) =—C~ 2 u, (k )m, (k ),
7T p2

(4)

,m, (p') = —
4 C~u, (p')m, (p'). (5)

The solution to Eqs. (4) and (5) is

m.(p') = m.(p.') [u.(p')iu. (p.')]'"". (6)

This result, which is valid for IP'I »m&' (the
heaviest quark threshold), is conventionally de-
rived using renormalization-group methods, ' and
is valid for general covariant gauges. ' Here p, '
is a normalization point which is often chosen at
the grand unification scale.

Let us assume that the running mass m, (p') for
strong interactions has been specified, including
its normalization. We can then consider the low-
est order [O(u)] perturbation 5m(p') to the run-
ning mass due to electromagnetic interactions.
Provided the integrals are convergent, we have,
for large p',

where u,(k') = 4~/(P ink'/A'), with P = 11-—,
' nz, is

the running coupling constant at large k'.' We
can also express this result as an evolution equa-
tion

~

"dk26m(p')=4, [e,'um, (k')+C~au, (k')m, (k')+C~u, (k')5m(k')].
4T p2

The three terms can be identified with the Dyson-
equation contributions indicated in Figs. 2(a)-2(c),
respectively.

The change in the @CD running coupling con-
stant 5u, (k') due to lowest-order electromagnetic
interactions corresponding to Fig. 2(b) is of or-
der uu, (k'). The 6u, (k')m, (k) term thus can be
neglected at large k' compared with the e,'um, (k')
term in Eq. (7).

The central question is the ultraviolet conver-

gence of the integral equation (7) for &m(p'). We
note that if 3C~/p &1, i.e. , nz&~, then (ink')m, (k')
-0 for k'-~ [see Eq. (6] and the integral of the

FIG. 1. Dyson equation for the self-energy. Double-
shaded blocks indicate irreducible self-energy and
vertex insertions.

(c)
FIG. 2. Dyson equation for computing order-& cor-

rections to quark masses in QCD.
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first term of Eq. (7) is convergent. In fact if 3C~/
p &], the solution to Eq. (7) which is proportion-
al to e is'

()m(p') = ——ae, 'm, (p ) ln (6)

l.e.]
6m(p') 3 ae,'
m.0') P a.(p')'

Equation (6) is valid for Ip'1»m/', where m/' is
the threshold for the eleventh flavor threshold.
Thus if there are at least eleven (but not more
than sixteen) quark flavors, "the lowest-order
electromagnetic and weak interaction contribu-
tions to the running quark mass are each finite
and in principle calculable in QCD. In particular,
the order-e contribution to the "bare" mass of
the total Lagrangian liming „5m(p') vanishes.

Note that the complete electromagnetic contri-
bution to the quark mass to order 0. at the had-
ronic mass scale requires a detailed calculation
of the smail-Ik'I integration region. The result
of Eq. (9) shows that the large Ik'I re-gion of inte-
gration, where P & 4, gives a ne/, ative contribu-
tion to the quark mass; i.e. , this contribution
tends to make the u quark lighter than the d quark:
5m„(pg) &5m, (pg). However, we emphasize that
the calculation of m„—m~ (or m~ —m„) still re-

Bm
[Cza~(p )+eg a(p )m(p ),sit)pg 4m

(10)

i.e. , the normalized running mass is (with the
one-loop approximation to the renormalization-
group P functions for a and a,),

(p 2) gcz/5 a(p 2) (geg /4E/)
m(p') = mp

( g) ( g) (11)

where m, =m(p, ') and a(p') is the quantum elec-
trodynamics (QED) running coupling constant, "

(12)

and K/= Q/e/', the sum of the squares of the
charges of all the fermions (K/=&4n/ in the usual
generation replication schemes).

Thus

quires knowledge of the low-momentum region as
well as the weak-interaction contributions. Fur-
thermore it is not clear that the u- and d-quark
masses are degenerate in the absence of electro-
magnetic or weak-interaction contributions [m,u(P, ')
='m '(p ')]

It is interesting to compare the result of Eq. (9)
with the corresponding renormalization-group re-
sult for the running mass. ' If we consider only
QCD and electromagnetic interactions, then for
large P' we have

g
~

-(geg g/cr/) —m()m(p') =m(p') -m, (p') =m,(p'),
~

—]. + ~ "m(pg)a(p.')/ 1Ã 0
(13)

where, in general, we expect m, (pg') wm(pg') (even at the grand unification scale). If 0&p &4, then we
can use Eq. (9) and

(mg-mg, )/mg, =-(3/p)ae, '/a, (pg')

to specify Eq. (13) to lowest order in a = a(p, '). Although these results cannot be trusted quantitatively
when a,(p') is of order a, we see that 6m(p')/m(p') becomes of order 1 as one approaches the grand
unification scale.

In conclusion, we have found that the strong asymptotic-freedom convergence of QCD with 16 & n/
~ 11 quark flavors is sufficient to render the lowest-order and electromagnetic contributions to quark
masses calculable from integrals involving the QCD and quark mass scales alone. In general, pertur-
bative terms of order a, a', ..., a" are all calculable if P &4/n; i.e., n/& ,' (11-4/—n) (e.g. , the terms
of order a, a', ..., a" are calculable if n/=16). The higher-order terms involve contributions of or-
der a""(lnA, '/m')"" ' where A,' is an ultraviolet cutoff. Assuming this convergence is set by a
grand unification scale where lnA, '/m' «a ', then the higher-order terms are still relatively small.

We are grateful for valuable discussions with M. Dine, G. P. Lepage, K. Johnson, L. McLerran,
C. Litwin, and H. Quinn. This work was supported in part by the U. S. Department of Energy under
Contract No. DE-AC03-76SF00515 and in part by the National Science Foundation under Grant No. PHY-
75-15986.
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dk~
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Order-o, corrections to the annihilation of e e into hadrons are computed analytical-
ly. We briefly discuss the technique, which involves the extension to noninteger dimen-
sions of Chebyshev expansions. In the energy range 15-30 GeV {five flavors) we find

R =Sgeo {I+n~(|l)/w —0.94[ n~ (q)/P ] + ...},
where e is the momentum-space subtracted strong-coupling constant. Our result agrees
with that of Dine and Sapirstein, and Chetyrkin, Kataev, and Tkachov.

The calculation of high-order quantum-chromodynamic (QCD) corrections to R= o(e'e -hadrons)/
o(e'e —p, 'p, ) is of particular significance in at least two respects. First of all, both the theoretical
and experimental determinations of & involve fewer parameters than an analysis of deep-inelastic
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