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2'In '~6Pt, the BET (EXP) branchings of the 2,' state
to the 3&+, 4&+, 2&+, 2&+, and 0& states, relative to
the 03+ state, were, 0.003 (0.004), 0.34 (0.02), 0.14
(0.005), 0.016 (0.003), and 0.015 (0.0001), respective-
ly, while the branchings of the 26+ state to the 2&+ and
2&+ states, relative to the 25+ state, were, 0.005
(0.002) and 0.0095 (0.01), respectively. The BET
(EXP) energies may be summarized: 1.38 (1.40), 1.93
(1.60), and 2.39 (1.85) MeV for the 03', 25', and 26'
states, respectively. Again we see that as our pre-
dicted energies approach 2 MeV, the neglect of pure
guasiparticle pair states in our collective-mode cal-
culations becomes more serious. Their inclusion is
needed to brixg down the energies and to reduce some
of the already small &(E2)'s even further. In '~ Os
no data are available for these states. Our calcula-
tions predict the largest branching of the type above
tc be 25+—3&'/03+ = 0.02, with all others at least an
order of magnitude smaOer.
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A numerical study of the internal kink mode is performed for a family of tokamak
equilibria with circular cross section and parabolic pressure profile. If the P~ values
are sufficiently small, the internal kink mode becomes stable.

Internal disruptions are a key of tokamaks,
significantly affecting temperature and current
profiles in the plasma center. The associated
instabilities are generally interpreted as current-
driven resistive kink modes. The study of the
ideal magnetohydrodynamic (MHD) internal kink

modes is important, however, since these modes
might become dominant in high-P, high-tempera-
ture plasmas. In this Letter the internal kink
mode, defined as a mode with a toroidal wave
number n = 1 which leaves the plasma boundary
unperturbed, is examined in the context of ideal
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MHD theory by means of the ERATo' code. Be-
cause of the very small growth rates of this mode,
this problem is a challenge to stability codes.
But this study is also complementary to the con-
tradictory published analytic results, obtained by
expansion techniques. ' ' Bussac et al. ' claim
that there is P~ (defined below) stabilization of the
internal kink at low P~. Pao' states that there is
no such effect and Galvao, Sakanaka, and Shi-
gueoka' find that there is only stabilization in
some regions of parameter space. Zakharov'
agrees with Ref. 2. Our numerical results con-
firm the analytic results of Bussac et al.

In order to avoid numerical errors in the equili-
brium quantities, we use an analytic family of
equilibria obtained by means of a separation
Ansatz. ' This family is characterized by a para-
bolic pressure profile p =p, j' and a toroidal field
Br=(B,'+Cy')'~'/~, where g designates the pol-
oidal magnetic flux normalized to zero at the
plasma surface, ~ the distance to the main axis,
and p„B„nad C three free parameters. The
flux g is represented on a rectangular mesh, with
the boundary condition that it be constant on its
contour. The geometric parameters are chosen
such that, near the magnetic axis, the flux sur-
faces are circular and there is no triangular
term. The plasma surface is only approximately
circular. It is found that in the limit of large
aspect ratio the effect of this noncircularity on
the internal kink mode is negligible. The remain-
ing free parameters can be chosen to be the
safety factor on axis qo, the aspect ratio e ' and
poloidal beta p~ = 8v ffp dS/( p,,Ir') with Ir as
toroidal current.

The ERATO code uses a hybrid finite-element

method which, for a tokamak configuration, leads
to a pessimistic evaluation of stability. At low
resolution, the most unstable mode is strongly
destabilized. Increasing the resolution reduces
the growth rates, but does not change the order-
ing of the unstable modes. This makes it possible
to make the most unstable mode converge un-
ambiguously and economically by extrapolating to
zero mesh size.

The normalized eigenfrequency e is related to
the true frequency y by an Alfvdn time across the
main radius R, : co= [R,(p)' '/B, (R,)]y. The den-
sity p is set constant. Unstable MHD modes
have purely exponential growth (a'&0). For typi-
cal tokamak parameters,

~
&u

~

= 1 corresponds to
a growth time of the order of microseconds.
Since we are only interested in internal modes
the plasma boundary is kept fixed.

A mode is characterized by the displacement
vector t(r, t) = $(g, 8) exp(iuy+i yt), where y is
the toroidal angle around the main axis and 0 the
poloidal angle around the magnetic axis. %e
study the n = 1 modes. Figure 1 shows the eigen-
values ~' of the most unstable modes as a func-
tion of q, for a large-aspect-ratio case e '=8.4,
P~= 1.0, 1.2, and for a smaller aspect ratio e '
=3.5, P~ =1.0. Each point on the curves is ob-
tained by a convergence study, using up to 48
radial and 48 aximuthal points in the upper half
of the plasma cross section. A satisfactory re-
solution of the eigenfunctions requires a strong
accumulation of surfaces around the q = 1 surface
and the q= 2 surface, if the latter lies within the
plasma. The radial (s ~ y' ') dependence of the
normal (XI= $ ~) and aximutha. l (ZR = $ e) compo-
nents of the displacement along the 6=0 (mid-

-4) xl0 s'=8.4 P =1.0 -4) xl0 s '= 8.4 Pp --1.20 -hl Xl0 s '=3.5 P = 1.0

l.0-
2.0-

l 0-

0.5-

S

0.6

q, = l.5

0.8

&y = 2.45
qo

l.o-

I

l.0 qo 0.6

q, =l.5

0.8

0

0.2-

l.0 qo

=2.57

0.6 0.8

=348

1.0 qo

Fpo. &. The normalized eigenvalue of the most unstable mode as a function of q on axis for three different sets
of parameters (q, is q at the surface) .

537



VOLUME 44, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1980

plane) in a particular meridian plane is shown
for a typical case in Fig. 2. The corresponding
vector plot of this eigenmode is shown in Fig. 3
in the same meridian plane. Moving around the
main axis in the y direction, the vortex rotates
around the magnetic axis with little deformation
as long as the aspect ratio is large. The charac-
teristic step-function-like behavior of the normal
component XI at the q, = 1 surface is evident in
Fig. 2. At the q = 2 surface there is another sharp
variation. There are corresponding peaks in the
poloidal component ZR, which are due to the in-
compressible nature of the slowly growing mode.
Inside the q= 1 surface, the mode has, in terms
of Fourier components in 0, a dominant m =1 con-
tribution, whereas at the q = 2 surface it is essen-
tailly m = 2. The absolute values of the contribu-
tions to the potential energy 5W on each flux sur-
face are also shown. It is striking that the domi-
nant negative contributions come from the region
close to the axis, and that the positive ones are
also inside the q=1.0 surface. The negative and
positive contributions cancel each other up to 3%%.

The very small contributions to 6$'between the q
=1.0 and q=2. 0 surface (i W i=10 in the units
of Fig. 2), which are not shown in the figure, are,
of course, important for the correct eigenvalue.

Figure 1 shows that the unstable region is lim-
ited to a finite range of q, values qi &q, &qU. For
e '=8.4 and P~ =1.0, qua=0. 61 and qU=0. 975 (1.
Note that at large aspect ratio q, = q~ corresponds

FIG. 3. Vector plot of the poloidal component of the
displacement in the same meridian plane is in Fig. 2,
for 6' 8 4 Pp 1.0 and &0 0 9.

to q, = 1.5 at the surface, which suggests that the
low-q stabilization is due to interference between
the m = 1 and m = 2 Fourier components of the
eigenfunction. The main object of our calcula-
tions is to study the dependence of the upper sta-
bility limit qU on P~ at large aspect ratio and
compare it with the predictions of Bussac et al. '

In Ref. 2, instead of qc and P~, the authors use
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FIG. 2. Radial dependence of the normal and poloidal components XI and ZA of the displacement along the ~ =0
line (midplane, outwards from the magnetic axis) in a particular meridian plane &=const. For clarity the Ll has
been multiplied by a constant factor of 3.5. m; and ao; denote positive and negative contributions of ~S' on each Qux
surface in arbitrary units (s = 1 —P/P~); DW= Jds dw(s) = Z;As, dg(s ) .
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as parameters the radius of the q=1 surface, r„
and another definition of the poloidal P, denoted
by us P~

""",which relates to ours through
r 2

0

1r '
1+ —~ (4q, ') -'

P~,

where B~ designates the poloidal field and a the
plasma radius. The pressure profile is taken to
be parabolic. The stability limit p„(r,) obtained
in Ref. 2 is plotted in Fig. 4. The lines corres-
ponding to q, and P~ constant are also shown.
The stable region is defined as p~ (~,) x p„B(r,).
The lower limit q~ has not been calculated in
Ref. 2, so that there is uncertainty about the
extrapolated P,„(r,) curve, marked "?." For P~
-1.2, the stability limit is always q, =1. This
same diagram shows the numerical results ob-
tained for c '=8.4. The crosses denote the values
of the parameters used in the numerical stability
calculations and the dots the marginal points ob-
tained by plotting either e' as a function of P~ at
constant q„as illustrated in Fig. 5, or cu'as a
function of q, at P~, as in Fig. 1, and extrapolat-
ing to the marginal point v'= 0. Figure 5 shows,
for qo=0. 8 and 0.9, the dependence of the eigen-
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0.5FIG. 4. Stability map for the internal kink at large
aspect ratio. The curve is the theoretical curve in Ref.
2 and the dots are the numerical results for a '=8.4,
r() being the radius of the q =1 surface.

FIG. 5. The dependence of the square of the growth
rate on P&, for e = 8.4 and q, =0.8 and 0.9.
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value ~' on P~. It is linear in P~. The critical
values of P~ for these cases are P„=0.63 and P„
= 0.70, respectively. They agree well with Ref. 2.
For P~&P„ the unstable internal kink disappears.
We do not see a resurgence of this mode at low

p~ as predicted by Galvao, Sakanaka, and Shi-
gueoka. ' For P~= 1.2, Fig. 1 confirms that qU
= 1.0. The numerical results are in agreement
with the full stability diagram of H,ef. 2.

Another important detail worth discussing is
the shape of the eigenfunction at marginal sta-
bility. Inspection of the normal component XI
and the poloidal component ZR of the eigenfunc-
tion for fixed q, = 0.9 and for P~ decreasing from
one to p,„, as done in Fig. 2, is instructive. It
is found that XI as a function of s for 8= 0 is
straightened, with a sharper variation at the q
= 1.0 surface, towards a true step function. At
the same time the peak of ZR at the q = 1.0 be-
comes more pronounced, i.e. , narrower, and
the peak at the q= 2.0 surface vanishes. The con-
vergence study of the eigenfunction shows that at
the points of marginal stability the eigenfunction
is singular at the q=1 surface.

Finally, we varied the aspect ratio from 8.4 to
2.5. If the q = 1 surface is close to the magnetic
axis, the stability limit does not change compared
with the large aspect ratio cases discussed above.
In Fig. 1 the eigenvalues of the unstable internal
kink mode are plotted versus q, for an interme-
diate value e '=3.5 and P~ = 1.0. In the range 8.4
~ e '&2. 5 and for p~=1.0, the upper limit re-
mains unchanged at qU= 0.975 and the lower one,

q~, decreases. The p„v l acus for marginal sta-
bility for fixed q, change slightly, dropping to P„
=0.5 for qo=0. 8 and e '=3.5 and P„=0.5 for qo
=0.9 and e '=3.5. It was not investigated further
whether this destabilization is due to the increased
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noncircularity of the outer flux surfaces or is
mainly an aspect-ratio effect.

These numerical studies of the internal kink
mode demonstrate the dependence of its stability
on P» in accordance with the analytic results of
Bussac et aL, ' but in contrast to the findings of
Pao' and Galvfo, Sakanaka, and Shigueoka. ' For
sufficiently small pressure gradients the internal
kink mode becomes stable for all values of q. In
the large-aspect-ratio case the results also
agree quantitatively with those of Ref. 2 in sta-
bility limits and in details of the eigenfunctions,
but predict up to an order-of-magnitude larger
eigenvalues ~'. The latter difference may arise
from the estimate used in Ref. 2 for the kinetic
energy. If the q=1.0 surface is close to the mag-
netic axis, these stability limits remain basically
unchanged up to an aspect ratio of 2.5. If, how-
ever, the q=1.0 surface is farther out, as in the
case of the lower stability limit q, =q~, the re-
sults depend on the aspect ratio. These results
are obtained for parabolic profiles with high
shear. The fact that equilibria with a flat current
have no unstable internal kink modes" indicates
that the stability depends on shear, which acts

as a destabilizing factor.
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It is shown that the concepts developed for'understanding superfluid turbulence in ther-
mal counterflow can be successfully applied when the He II is also in uniform rotation.
In particular, the association of a critical length scale with the turbulent transition,
when extended naturally to the rotating superfluid, yields a simple result in good agree-
ment with the data of Yarmchuck and Glaberson.

In a recent investigation of thermorotation ef-
fects in liquid helium II, Yarmchuck and Glaber-
son" observed several phenomena which suggest
that superfluid turbulence in a rotating counter-
flow channel is qualitatively different from turbu-
lence in a stationary channel. For example, the
onset of the turbulence in the rotating channels
occured at a larger critical heat flux. It seems
paradoxical that vortex lines introduced by rota-
tion should have this stabilizing effect on the
transition to superfluid turbulence, a state which
is generally believed to consist of a random dis-
tribution of vortex lines. " This Letter demon-
strates that all of the observations of Yarmchuck
and Glaberson are in quantitative agreement with

the concepts developed to understand superfluid
turbulence, in particular the relation of the criti-
cal heat flux to a critical length scale in the vor-
tex-line distribution. This picture of a critical
length scale evolved from the analysis' of super-
fluid turbulence in channels an order of magni-
tude smaller than those used in the rotation ex-
periments. The extension of the critical-length
criterion to these larger flow channels, and to the
analysis of superfluid turbulence in rotation,
constitutes a severe test of the concept.

Before considering the effects of rotation it is
important to establish that the turbulence in these
large channels, while stationary, is essentially
the same as in the small ones. The turbulence is
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