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Two new features, finite-size effects and a new hydrodynamic eigenvalue problem,
are essential for a consistent discussion of the scattering of light by a fluid in a non-
equilibrium steady state. The light-scattering structure factor is computed for the
case of a steady thermal gradient and a steady shear flow in a fluid. The height differ-
ences found in the Brillouin peaks differ from those obtained by Ronis, Procaccia, and
Oppenheim and Machta, Oppenheim, and Procaccia.

In this Letter we discuss two new theoretical
aspects of the scattering of light by a fluid in a
nonequilibrium steady state. The first of these
deals with the required finite size of the scatter-
ing volume in a nonequilibrium steady state. Al-
though actually present in equilibrium the effect
is much more pronounced in nonequilibrium
where it must be carefully taken into considera-
tion, because gradients prevent the thermody-
namic limit from being taken. The second prob-
lem deals with the change in the hydrodynamic
modes caused by the spatial variation of all
thermodynamic and transport coefficients appear-
ing in the hydrodynamic equations of motion.

In our explicit calculations we consider either
the case of a steady thermal gradient or the case |

where there is a steady shear flow in the fluid.
In this Letter both the eignevalue problem and the
effects due to the finite size of the scattering
volume are computed by perturbation expansions.
A more complete treatment will be published
elsewhere.! Related but different results have
been given by Ronis, Procaccia, and Oppenheim?
and Machta,® Oppenheim, and Procaccia®, The
difference is related to the two new theoretical
aspects mentioned earlier and a precise connec-
tion will be made in the last section of this Letter.
The quantity of interest for light scattering is
the nonequilibrium structure factor S(K, w) for
wave number K and frequency w, where 7k and
7iw are the momentum and energy transfer from
the fluid to the light. In general this structure
factor may be defined as*
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where V is the volume of the fluid, 7 is the dura-
tion of the experiment, and M {R,, t;; R,t,)

= (p(R,, t)A(R,, £,)). Here p(R,, t,) =p(R,, 1,)
—{p(R,, t,)), where p(R,,?,) is the microscopic
fluid density at the point R, and ¢, and the angular
brackets denote an average over a nonequilibrium
ensemble. The fact that usually only a small
portion of the fluid is both illuminated and de-
tected by the collection optics is taken into ac-
count by the electric field amplitude weighting
function p(R). This function may be used to de-
fine the scattering volume since p(ﬁ) is only signi-
ficantly different from zero in the scattering
volume.® The factor | @R p*R) included in the
definition of the structure factor is related to the
power of the incident electric field in the scatter-
ing volume. To avoid effects present at the bound-
aries that maintain the nonequilibrium steady
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state, we assume that the function p(R) defines a
fluid region deep in the interior of the volume V.
It is the spatial variation of the weighting func-
tion p(R) that defines the finite-size effects and
this variation must¢ be taken into account, for a
congistent theory, in a nonequilibrium fluid.®

We compute MR, ¢,; Ry, ¢,) for a nonequili-
brium steady-state fluid as follows. Using the
nonequilibrium projection operator of Ernst,
Hauge, and van Leeuwen’ we construct, in a
manner identical to that used by Ernst and Dorf-
man® in equilibrium, five coupled equations of
motion for the variables M,,(R,, Ry; £, t,=1).
Here a is one of the set {p, g, €} of microscopic
mass, momentum, and energy densities, respec-
tively, and M,, is defined in a similar manner as
M ,, above. For the case of a temperature gra-
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dient and no macroscopic flow, the equations are
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In these equations p, p, € k&, T,n, ¢ and X are the pressure, mass density, energy density, en-
thalpy density, temperature, shear viscosity, bulk viscosity, and heat conductivity, respectively, at
point ﬁl; Agg,yv i8S given by 04,04 + 04y 85y =% 0,50,,; and the summation convention has been used.
For the case of a shear flow a similar set of equations can be derived.® In equilibrium, Egs. (2)-(4)
reduce to linearized hydrodynamic equations whose eigenvalues and eigenfunctions are well known. In
nonequilibrium these hydrodynamic equations define a new eigenvalue problem for the nonequilibrium
hydrodynamic modes. We solve this new eigenvalue problem by a perturbation expansion around total
equ1hbr1um i.e., we let (a)= Q.q+Aba and keep terms to order A only. The resultmg f1ve equations
for Map(Rl,Rz, t) are then solved in terms of the equal-time correlation functions M, (Rl, R,,£=0). The
latter can be computed by formally solving the Liouville equation for deviations from total equilibrium
and then using the mode-coupling theory of Kadanoff and Swift'® to compute the corrections to the equi-
librium equal -time correlation functions. We have calculated M,, to first order in A and from M, we
obtain S(K, w) according to Eq. (1).

We now present our results for the two cases mentioned previously.

Case 1.—The fluid is maintained in a steady state with uniform pressure but with a constant tempera-
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ture gradient. We find
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The quantity y, (K, w) is given by
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where A,=w — ock. In these expressions, kj is
Boltzmann’s constant, x, is the isothermal com-
pressibility, c¢ is the velocity of sound, y=c¢,/c,
is the ratio of the specific heats at constant pres-
sure and constant volume, D, is the thermal dif-
fusivity, I'; is the sound absorption coefficient,
and £ is the unit vector K/|K|. All thermodynam-
ic and transport coefficients in this equation are
to be interpreted as space averages (to order A)
weighted with the function p*(&)/ [drRy%(®). We
note that to linear order in the gradients we can-
not distinguish between the average of a product
of functions and the product of the averages.

Case 2.—The fluid is maintained in a steady
state with a constant linear shear flow, at least
far from the wall, where the average local veloc-
ity of the fluid is given by u=Xy%, where £ is a
unit vector in the x direction. We assume that
the average density and temperature in the fluid
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are constant in space and time (we neglect vis-
cous heating of the fluid). The result S2(k, w) is
given by (5) and (6) with y ) replaced by yo®,
given by yc“) with the changes (1) w ~w’'=w - k
-uav, where U,, is the weighted spatial average of
U over the scattering volume; (2) ock *VT /T ~£ %, X.

We now comment on a number of features of
these results.

(1) If we examine the function y, in Eq. (6), we
see that there are two distinct contributions. The
1 in these equations is due to the coupling of two
hydrodynamic modes in the equal-time correla-
tion functions and represents a long-range (~1/%?%)
contribution to the correlation functions. The re-
maining contribution arises from the new eigen-
value problem mentioned previously.

(2) In Case 1 the temperature gradient leads to
unequal contributions (~ oy, - VT) to the two
Brillouin lines. In Case 2 the rate of shear X
leads to equal contributions (~¥,X) to the height
of the Brillouin lines.

(3) In order to obtain the results given here we
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have to assume (a) that L > 1, i.e., the wave-
length of light must be much smaller than the
linear dimension L of the scattering volume;

(b) that A~LV({a)/a.,<1, i.e., the thermody-
namic parameters do not change significantly in
the scattering volume; and (c) that two dimen-
sionless quantities A=c/T',k?’L and e=L|vc|k/
I';k? or €e=L|X |k/Tk? are small and we will dis-
cuss each in turn.

The origin of the parameter A is the position
dependence of the electric field weighting function
p(R), which varies over the length L. This pa-
rameter can be understood as the ratio of the un-
certainty in the distance of the Brillouin lines
from the central line ¢/L, caused by the finite
size of the scattering volume, to the width of the
Brillouin lines I';k? as determined by the lifetime
of a sound wave. For both equilibrium and non-
equilibrium light-scattering experiments this
parameter should be small in order that the width
of the Brillouin peaks in S(K, w) be determined by
the effects due to the lifetime of the sound wave
rather than by the finite size of the scattering
volume. For a typical light-scattering experi-
ment in H,0 at 20°C, with L=0,035 cm, if x» <0.1
then 2 =3 x10* cm™%,

The parameter € occurs in the calculation of
S(k,w) only when the fluid is not in equilibrium.
For a fluid with a temperature gradient, €= LVclk/
I' k%, where IVc| is the magnitude of the gradient
in the sound velocity (due to the temperature gra-
dient), and for a fluid with a velocity gradient X,
e=L|XIk/T  k®. This parameter measures the ra-
tio of the magnitude of the broadening of the Brill-
ouin lines due to the gradient in the scattering
volume (LIVclz or LIX|E) to the width of the Bril-
louin lines I' k2%, The condition € <<1 is required
for our expansion around total equilibrium to be
valid. For H,O at 20 °C, with L= 0.035 cm and k
=3x10* cm~!, if € <0.1 then |VT|<10°/cm,

(4) Because of the required smallness of the ex-
pansion parameters X and € we can only consis-
tently predict a change from the equilibrium
structure factor that is very small. Although we
cannot rule out the possibility that the height dif-
ferences given by Eq. (6) will remain and become
observable when x and €= 1, this can only be es-
tablished by a nonperturbative solution of the new
eigenvalue problem mentioned previously.!

(5) In nonequilibrium the importance of the pa-
rameter A is much more pronounced. In equilib-
rium the expansion parameter A may be said to
lead to boundary effects, i.e., if bulk effects are
of order L® then the effects associated with A are
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of order L2, However, when gradients are pres-
ent this assumption can break down. In that case
boundary effects of the order L? can be multiplied
by terms of order L/L, representing the varia-
tion of the thermodynamic or hydrodynamic varia-
bles over the system. Here Ly is the character-
istic length for the variation of the quantity of in-
terest. All this can then lead to terms of order
L3 which are the same size as the bulk effects.

It is terms of this type that require us to take in-
to account the spatial variation of the p(R) func-
tion, in nonequilibrium, for a consistent theory.
In fact, we note that as an intermediate result
one can obtain corrections to the equilibrium
Landau-Placzek (LP) result that are due to the
gradients which are even more singular in 1/k
than those given by Egs. (5) and (6). These cor-
rections are proportional to gradT or X and are
of order 1/k® more singular than LP and repre-
sent a change in the location of the Brillouin
peaks. However, they are cancelled by terms
which arise from the spatial variation of p('ﬁl).

(6) Terms of this type are also partially respon-
sible for the difference between our results and
those given by Ronis, Procaccia, and Oppenheim,?
and Machta, Oppenheim, and Procaccia.® The
nonlocality corrections discussed by Ronis, Pro-
caccia, and Oppenheim,? while not imaginary,*
as stated by the authors, are cancelled by terms
which would arise from the spatial variation of
the function p(R).

The remaining difference between the two ap-
proaches?*® (those authors find y ;=1 for all cases)
can be accounted for by the evaluation of the
three-time correlation function given by Ronis,
Procaccia, and Oppenheim?® as Eq. (2.18), If one
evaluates this function in a straightforward man-
ner for low densities, using a kinetic method due
to Dufty,'? then one finds both the contributions
to the structure factor given by Eq. (6) and dis-
cussed in (2). We believe that in evaluating this
expression Ronis, Procaccia, and Oppenheim?
treat a time-dependent projection operator intro-
duced by them to evaluate their Eq. (2.18) in part
as if it were a normal time-independent projec-
tion operator as given in Ref. (8). However,
when the projection operator they define acts on
a microscopic current J k then one has, for small
k, an expansion of the form

PR JK(D) =AK()[C,+C,k%+..),

where AK is a microscopically conserved densi-
ty and, for times ¢ longer than some microscopic
decay time, the coefficients C; in this expression
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may be taken as constants. When a normal time-
independent projection operator acts on a current
the expansion is

PkJk ~AK[Cy+D k2 +D k% +..].

Although in the limit 2~ 0 these two expressions
become identical, for k# 0 they differ and this
difference ultimately leads to terms that are the
same order of magnitude as those given by Eq. (6)
of this Letter.

(7) For a dilute gas the present authors!® pre-
viously computed the structure factor, for the
case of a steady thermal gradient, using a fluctu-
ating kinetic equation. Although the formalism
presented there is correct and equivalent to the
one presented here, the value of the coefficient y
is incorrect. The correct value, valid for all
densities is given in Eq. (6) here. The bilinear
term mentioned in that Letter defines, in kinectic
theory, the new eigenvalue problem discussed in
this paper in a hydrodynamic context.

We are much indebted to Dr. J. Dufty and
Dr. Y. Kan for checking some of our calculations
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Observation of Structure Resonances in the Fluorescence Spectra from Microspheres

R. E. Benner, P. W. Barber,®) J. F. Owen, and R. K. Chang
Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520
(Received 14 December 1979)

Sharp intensity peaks are observed in the fluorescence spectra from dye-impregnated
single polystyrene microspheres which are not seen in the spectra from bulk material.
The resonant peaks are shown to correspond to the natural modes of oscillation of a di-
electric sphere, and excellent correlation is found between experimental and theoretically
predicted spectra. The results can be applied to the interpretation of inelastic emission
(fluorescence and Raman) spectra obtained for the chemical speciation of aerosols and

particulates.

A dielectric sphere possesses natural modes
of oscillation at characteristic frequencies corre-
sponding to specific size-to-wavelength ratios.
These structure resonances have been studied
both theoretically and experimentally in the mi-
crowave range'’ > and more recently in the optical
range.*”° In all of these studies, the emphases
have been on structure-resonance effects result-
ing from external excitation, usually by plane
waves. The elastic absorption and scattering
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efficiencies and the optical levitation force are
all known to be enhanced when the incident wave-
length is commensurate with the natural modes
of oscillation of the sphere.’”® Recent theoretical
work™ ? has predicted the existence of structure
resonances in the inelastic emission.

We report the first experimental observation of
structure resonances resulting from the internal
emission of inelastic radiation by fluorescing
molecules embedded in a microsphere. Sharp in-
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