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The scaling theory of Anderson localization by Abrahams et al . is used for dirty con-
ductors just above the Anderson transition. When the inelastic mean free path, l &h, is
smaller than the coherence length, $, in the extended phase, the conductivity increases
with temperature like /'pp This may be related to the quite general correlation be-
tween large resistances snd their negative temperature derivatives found by Mooij. l pg
& ( is required to distinguish between the extended and localized regimes.

Well-known anomalies, "unexplainable by con-
ventional transport theory, exist in highly disor-
dered metals and alloys. For example, once the
zero-temperature resistivity of A15 metals ex-
ceeds an order of magnitude of -150 pQcm, the
resistivity decreases with increasing tempera-
ture to a high-temperature "saturation" value
which is only vreakly dependent on disorder. ' The
latter "saturation" effect, which occurs also for
clean A15 metals, probably depends also on spe-
cific properties of these transition metals, such
as having narrow bands. ' The breakdown of Ma-
thiessen's rule, dp/dT being negative for large
enough p, appears to be quite universal as empha-
sized by Mooij' who found such correlations be-
tween d lnp/dT and p for a large class of mater-
ials. It is also possible that the decrease in the
resistivity of liquid metals with increasing tem-
perature may be sometimes related to the same
presumably general phenomenon.

It is not hard to understand why conventional
transport theory may fail once the electronic
mean free path, /, becomes only somewhat larg-
er than the microscopic distance a (l is probably
-10-20 A for p-10 ' 0 cm). In fact l-a is the
well-known Ioffe-Regel criterion, ~ where, as em-
phasized by Mott, ' one would expect localization"
or at least a breakdown of perturbation expan-
sions in which a/l is a small parameter. In the
case l ~ a, localization may have not yet occurred
but nevertheless it is reasonable to start from
the localization theory rather than from the usual
l »a approximations. ' A similar point has al-
ready been made by Jonson and Girvin' who per-
formed numerical calculations for an Anderson
model on a Cayley tree, which produced a qual-
itative agreement with the Mooij' correlation.
These calculations, however, also yielded a
"minimum metallic conductivity, "which does not
occur in the scaling theory'" in which the resis-
tance diverges, at T = 0, near the Anderson tran-

sition.
While attempts" to formulate the microscopic

theory of Anderson localization in analogy with
known phase transitions have suffered from sig-
nificant drawbacks, "a renormalization-group
scaling theory' of localization was recently con-
structed by Abrahams et al."relying on very gen-
eral arguments. The predictions of this theory,
taking also into account inelastic scattering of
the electrons by phonons" and heating effects, "
appear to agree with experiments on effectively
two-dimensional (2D) films. " The limiting case
of 2D is, however, the most difficult one theoret-
ically. " In the 3D case discussed here the qual-
itative validity of the theory" is quite clear.

The point that I wish to make in this note is the
following. The scaling theory of localization in-
volves a characteristic length, $, which diverges
as the localization edge is approached from both
the localized and the extended sides. The physi-
cal meaning of $ in the extended phase will be dis-
cussed below. We assume that the material is so
disordered that it is close enough to the localiza-
tion edge so that $ is much larger than both the
elastic mean free path l„and a. When the tem-
perature is high enough so that $ is much larger
than the inelastic mean free path, l „, the latter"
length scale will determine the conductivity, o.
It follows then as we shall see that cr ~ l z

' (tak-
ing the bulk, 3D case), i.e. , oincreases with
temperature. It is perhaps not surprising that g
increases with temperature for localized states
where "hopping" conductivity is essential. How-

ever, we argue that this can also be true in the
extended phase, provided only that lz„&$. In fact,
very generally, for a phase transition with a di-
verging correlation length, $, a measurement
done on a length scale ~ L sees the phase transi-
tion smeared over a range T,+ ~T, where
((+AT,)-I. Thus, for l „.&(, o cannot distin-
guish between localized or extended electronic
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states.
Let us review the renormalization-group-scal-

ing' "picture for localization at d = 3 (the gener-
alization to any d &2 is straightforward). Abra-
hams et a/. "focus attention on the way the con-
ductance g (measured in units of e'/2h- 1.2X 10 ~

mho) depends on the length scale L at T = 0. Com-
pelling physical arguments'" suggest that for T
= 0 and no interactions, g is the only relevant pa-
rameter. g(L) can be thought of as the conduc-
tance of a cube of size L, once L»l, &. g can al-
so be defined' as the ratio between the appropri-
ate two coupling constants: 8 divided by the dif-
fusion time and the level spacing dE/dN(E), both
at scale I.. The above ratio is also proportional
to the Anderson's model' "V/W" ratio. In the
conducting, "Ohmic" phase one expects g(L) ~ L,
while in the localized phase g is expected to van-
ish exponentially with I.. This leads to the follow-
ing limits for the function P(g) =—d lng/d lnL:

1, large g,
—const+ lng, small g. (1)

Since P(g) is continuous (and in fact analytic) and
should be monotonic, p must vanish at a certain
pointg, . g increases (decreases) with L for g
&g, (g & g,). g =g, is an (unstable) fixed point,
corresponding to an L-independent g and a van-
ishing conductivity, 0, for large L. Thus, g&g,
is the conducting phase and g «g, the insulating
(localized) one. For g= g„p(g) has a finite
slope:

p(g) —= s ln(g/g, )
—= se, eo—= ln(g/g, ) «1,

where s is a number larger than" but of the or-
der of unity. If it is assumed now that at some
microscopic length scale, L„g(L,) = g, —= g„
one can integrate (2) and find

g(L) = g, exp[e (L/L, )'], -e = (g —g,)/g„(3)
which is valid only as long as (2) applies, but p
has to go continuously to (1) at large

~ In(g/g, )~.
Thus (2) breaks down once at se =—1 and goes over
to P=1 for the conducting phase and to the loga-
rithmi. c dependence on g in the localized phase.
The latter yields the exponentially vanishing g
for e «0. Focusing on the conducting phase, one
sees that the crossover to the normal Ohmic be-
havior is obtained once

g= g, e'& -g, x O(1), L=—Lge, '~'=- ~(~,). (4)

For length scales larger than $, the behavior is
Ohmic (g ~L). It is important that g does not
change in order of magnitude in the whole range

L, & L& g. This follows from the simple assump-
tions (as in Ref. 10) that s =O(1) and p is a smooth
function. Evaluating the macroscopic conductiv-
ity o =—g ($)/f, it was found in Ref. 10 that, in
agreement with Ref. 9,

o =Ag, (e'/h)),

where A is a constant of order unity, o - 0 at the
transition, and there is no "minimum metallic
conductivity. " It is important to understand the
physical meaning of the length $. It signifies the
scale at which the conductance becomes Ohmic
(the resistance of a cube of side I. goes like L ').
It is remarkable that $ diverges at the (T = 0)
transition to the insulating state, so that only
samples of increasing sizes can be regarded as
macroscopic as the material "tends to an insula-
tor. " In the localized side, $ measures the local-
ization range, where the wave functions decay to
zero for lengths larger than $. In the extended
phase the wave function, (, may be envisaged to
have the following structure: ~g~ is large around
the point where it is going to be localized and de-
cays within a length scale $ to a small (possibly
oscillating) value, which vanishes as g- ~ and
the localization edge is approached Thu.s, o(L)
is clearly L dependent for I.&$.

The above scaling picture is valid only when (
» max(l„, a) =—L, where a is a microscopic length.
When the disorder is small enough so that g & L,
the length L, becomes the relevant length. We
note that a and hence I-, can be larger than l, &

for, e.g. , a granular metal. We expect that $
~ I-, is the condition for the validity of convention-
al transport theory at 7'. = 0.

Now, suppose that the temperature T is finite,
so that the inelastic mean free length I „is de-
fined. " The T = 0 theory can now be used only at
length scales L s lz„(for L «l~h, inelastic colli-
sions are not important). The temperature should
thus have a small effect as long as it is so low
that l~„»$. However, once T is such that

(6)

then (5) is invalid, and the conductivity becomes
sensitive to the inelastic effects. From (4), the
conductivity at length scale l „(L,&l „&$) is

o =Bg,(e'/hl „), (7

where Bis a constant of order unity. It now ap-
pears to make sense to further assume that lph
is the relevant length scale for the conductiv-
ity, "'"i e , that the b. e.havior is Ohmic (g~L)
for L & l „. This should be true because the wave
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functions are scrambled enough by scattering
over the length scale lph.

What this picture predicts, therefore, is that
once I,&

is so small that g»L, (i.e. , roughly for
p ~ l0 ' A cm), p should decrease with increasing
temperature for T larger than a characteristic
temperature determined by (6). This characteris-
tic temperature, T„will decrease with increas-
ing disorder [increasing p(T =0)] and with increas-
ing electron-phonon coupling. In fact, T,~ [p(T
= 0)] "*where x is the power with which l „in-
creases at T —0, l h~T ". Note that when this ef-
fect just starts, 1&& will very quickly decrease be-
low I.„where this picture should not be valid.
However, for sufficiently disordered metals or
alloys, a significant range of negative dp/dT
should exist. These observations are in qualita-
tive agreement with Mooij's correlation' and with
the results' on highly damaged A15's.

As a point of principle, we emphasize again
that the same behavior should obtain for /P„& g on
the localized side. Thus, to distinguish between
real localization and incipient effects, of the sort
suggested here, one needs l „&$. This point is
in agreement, in the localized phase, with Thou-
less." It is remarkable, though, that localiza-
tion affects the physics on the extended phase
once lp„&$. For I „»$ (or, more physically,
when the time between inelastic collisions, ~ph,
becomes much larger than the time for quantum
diffusion" over a length $) the extended and the
localized regimes should behave very differently.
In the former, p is only weakly temperature de-
pendent. In the latter the "phonon-assisted" dif-
fusion appears like a random walk with a step (
(= localization length) and time ~zz. Thus, we ex-
prect in the latter case, independent of dimen-
sion,

o ~e'(dn/dZ) ('/7, „,
where dn/dE is the density of states. Equation
(8) assumes that the typical phonon energy satis-
fies kT a dE/dN (at scale $), as otherwise expo-
nential dependence should follow. " Thus, 2D
logarithmic behavior, as found in Ref. 14 for 2D
samples, is in the range l„h& $." As emphasized
above, in this range the behaviors in the extend-
ed and localized regions are similar.

These considerations strictly apply for the
case of noninteracting electrons. It is entirely
possible that the problem of localization where

further couplings" are important may be quite
different. This may include electron-electron in-
teractions and self-trapping polaron effects. The
latter effect may well be relevant for the satura-
tion of p(T) in clean A15 compounds, a case not
covered by the present note. To get more quan-
titative results on o(T), o(Z) has to be averaged'
over the Fermi distribution by use of the Kubo-
Greenwood formula. Such calculations have been
done by McMillan. "
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