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Vifith resonance R 2 laser light pumping, the observation of stimulated emission of the
29-cm ' phonon in ruby is reported. The transverse phonons propagate along the C, 3

axis and have some nonlinear gain.

Recently, extensive works have been reported
concerning optical generation or detection of
single-frequency high-energy phonons. ' ' Typi-
cally, the generation of these high-frequency
phonons was accomplished either by optical exci-
tation through some broad absorption band or the
standard technique of a thin heater film. The de-
tector, which is at another part of the same sam-
ple, is usually a region where an appreciable
amount of ions are maintained at some excited
state. In the case of ruby, it is the E('E) as
shown in Fig. 1. The detection of the single-fre-
quency 29-cm ' phonons is then achieved by the
observation of time-delayed g, light pulses. The
delay time corresponds to the time of flight for

phonons to travel ballistically from the generator
to the detector. More recently, evidence of high-
energy stimu1ated phonon emission excited by
resonant infrared pumping in Al,O, doped with
V" was reported. ' I report here the observation
of stimulated 29-cm ' phonon emission in ruby
with resonant optical pumping based on the fre-
quency and directionality of the phonon observed.
Some nonlinear gain is also reported.

A Molectron UV-400 N, laser was used to pump
a homemade dye laser with an intracavity prism
beam expander. The 5-ns laser pulse had a peak
power -10 kW. The linewidth was 0.2 cm ' which
was somewhat larger than that of the A, line in
our ruby samples. The dye laser was then fo-
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FIG. 1. Schematic energy level diagram in ruby and geometry of the resonance optical excitation experiment.
The photograph shows the signals as observed on the scope with a granular aluminum bolometer. The initial and

the time-delayed pulses are due to scattered laser light and transverse phonons, respectively.
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FIG. 3. 29-cm ' phonon signals as a function of in-
put dye-laser power on a semilog plot. Insets are
pictures of phonon signal (linear scale) for maximum
and &&2'o-dye-laser power, respectively. The vertical
gain changes by a factor of 32.

the 29-cm ' short-pulse peak phonon signal is
shown as a function of the input dye-laser power.
In the inset are two pictures showing the signal
at full and ~20 dye-laser power, respectively. The
gain was increased by a factor of 32 in the lower
picture. One of the important features is the rela-
tive strength of the short pulse as compared with
the long-pulse tail. The tail scales approximately
linearly with the dye-laser power but the inten-
sity of the short pulse decreases drastically. The
following important experimental features will
now be discussed. (1) The pulse consists of two
parts. (2) There is nonlinear gain though the da-
ta show no threshold or strong exponential gain.
(3) The transverse phonon signal propagates along
the C, axis.

Phonon avalanche and bottleneck effects' have
been subjects of extensive study. The qualitative
physical picture can be summarized as follows.
If there is an initial population inversion, the
stimulated phonon emission mill be greatly en-
hanced and will last shorter than a single-ion re-
laxation time. However, after the inversion is
over, the relaxation or the effective lifetime will
be much larger than that of a single ion (the bottle-
neck effect, of the order of 10' or more in ruby').
The short pulse in our experiment is therefore
attributed to stimulated emission, while the long
pulse is due to spontaneous emission exhibiting
a strong bottleneck effect.

Since the laser power used in our experiment is
more than enough to saturate the Cr" ions in 1
nsec we have an initial population of the order of
5 &10 "/cm'. The linewidth' and lifetime' of the
excited state 2A('E) in ruby are reasonably known.
The gain per unit length can then be estimated to
be of the order of 10' cm '. The loss is unknown
but should be of the order of 1 or less. Though
the lifetime will limit the gain length to about 10
pm, the total gain is still about e&"'~. Of course,
saturation will set in before the gain reaches this
order of magnitude, but, nevertheless, we are
still in a very high gain regime and this explains
the absence of threshold. At the highest laser
power, some of the saturation shown in Fig. 3
could also be due to the saturation in the pumping
process, namely, half of all the Cr" ions were
excited to the excited state 2A(E). To estimate
the total intensity of the stimulated emission, we
note that population difference between the two
excited states of 'F right after the stimulated
emission is small. Therefore the stimulated 2S-
cm ' phonons should have no problem of escaping
from the excited region. The maximum power
will therefore be limited by the conversion effi-
ciency of photon to phonon. The maximum power
should therefore be of the order of a watt, con-
sistent with our rough estimate from the sensi-
tivity of our detector.

Although the C, axis is one of the focusing di-
rections in ruby, the effect for spontaneous emis-
sion is small with the geometry (-1-mm-long
excitation length) used. ' This is also confirmed
in our experiment by the fact that the long pulse
shows very little directionality. However, the C3
axis, being one of the focusing directions, has
also the following advantages for the stimulated
emission: (a) the two transverse phonons are
degenerate; (b) the sound velocity is a minimum;
and (c) since the transition probability varies as
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1/v', where v is the velocity of sound, and the
velocity of transverse phonon is only half of that
of longitudinal phonon, it is therefore not sur-
prising that the transverse mode will dominate if
the matrix elements involved are at least com-
parable. All these factors considered, the ex-
perimental facts seem to be quite reasonable.

ln summary, I report the observation of stim-
ulated 29-cm ' phonon in ruby. The single-fre-
quency phonons are of transverse mode and prop-
agate along the t", axis. Because the background
phonons are negligible, the use of a conventional
superconducting bolometer with great sensitivity
is allowed. This phonon source is in principle
tunable by an external magnetic field, and the
linewidth is expected to be of the order of O.O2

cm '.' This intense, directional, tunable high-
frequency phonon source may complement the
superconducting tunnel junction as an alternative
phonon source. '
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Extensive experimental evidence indicates that the Schottky-barrier formation on III-
V semiconductors is due to defects formed near the interface by deposition of the metal
(or of oxygen). Detailed level positions are established and assigned to either missing
column IG or V atoms. This model also applies to formation of states at III-V oxide in-
terface states.

One of the oldest unsolved problems in solid
state physics is that of the mechanism of Schottky-
barrier (SB) formation (see, for example, Refs.
1-6). An apparently unrelated problem is that of
the states formed at the interface between a semi-
conductor and its oxides. Here, we analyze'data
of a relatively new type' "from a large number
of metals as well as oxygen-placed GaAs, InP,
and GaSb and establish a new mechanism of SB
formation. This is based on the formation of de-
fect levels due to the deposition of the foreign

atoms. The same mechanism applies to the states
at the III-V semiconductor-metal interface.

A long-standing theory of SB assumes that there
are surface states intrinsic to the idea1 c1ean
semiconductor. " These surface states are as-
sumed to remain after application of the metal
and to pin the Fermi level:hus, determining the
barrier height and device characteristics. For
the III-V compounds, this mechanism must be re-
jected since it has been definitively established"
that there are no intrinsic surface states in the
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