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The assumption is explored that the equilibrium order parameter of a superfluid ro-
tates with a rotating container. Since rotations and changes of phase are then intimately
related in inhomogeneous configurations, effects like the He-A "gauge wheel" of Liu
and Cross should arise in any superfluid. Such effects may be difficult to observe, but
it is shown that their existence in superfluid 4He is directly implied by nothing more
than the conventional equations of two-fluid hydrodynamics.

Liu and Cross' have pointed out that suitable essential to distinguish the phase of the superflu-
rotations of immersed wheels or surrounding id order parameter from its gradient v„since
walls can induce unusual flow and thermal effects the irrotational character of v, has nothing to do
("gauge-wheel effects") in the A phase of super- with whether or not the phase rotates. The as-
fluid helium-3. The equivalence of a rotation sumption of rotating equilibrium asserts that
about the gap anisotropy axis to a change in phase where superfluid 4He is in equilibrium with the
of the order parameter plays a central role in walls of a container rotating with angular frequen-
their argument, suggesting that gauge wheel ef- cy ~ about an axis z, the time dependence of the
fects are characteristic of the unique type of su- phase y is given by
perfluidity possessed by 'He-A. . This is not, in (I)fact, the case. The primary purpose of this Let-
ter is to show that gauge-wheel effects quite simi- where p, is the chemical potential and R is a rota-
lar to those discussed by Liu and Cross also oc- tion.
cur in superfluid 'He. Gauge-wheel effects are The consequences of this assumption for the
not peculiar to He-A, though the special form of equilibrium of a rigidly rotating container are
the A-phase order parameter lends to them (and simple and relatively uninteresting: In 'He-A the
other superfluid properties) an unusual richness texture in the anisotropy axis I rotates with the
and diversity of form container, and in both superfluid He-A and super-

What is essential for guage-wheel is that the or- fluid He the vector field v, undergoes rigid-body
der parameter of a superfluid should rotate (or rotation. [This rotating vector field is, of course,
move) with the container when the fluid is in equi- the gradient of a rotating scalar field and it is
librium with a rotating (or moving) vessel. The therefore, as required, irrotational (i.e. , curl
existence of such rotating equilibrium has recent- free). ] Note that a velocity field with axial sym-
ly been disputed on several grounds. "We be- metry is invariant under such a rotation, so that
lieve none of these criticisms to be well founded, rotating equilibrium is compatabile with the famil-
and a secondary purpose of this Letter is to em- iar behavior of vortex-free rotating 4He. If a vor-
phasize that nontrivial consequences of the as- tex lattice is present v, will not have axial sym-
sumption of rotating equilibrium in He are en- metry, and the observed rotation of the vortex lat-
tirely contained in the conventional two-fluid hy- tice with the container can be viewed as a direct
drodynamics of Landau. ' Therefore in what fol- confirmation of Eq. (l).
lows we shall use the assumption of rotating equi- More interesting things —the gauge-wheel ef-
librium only for its (considerable) heuristic pow- fects—happen when various parts of the surface
er, showing that if the order parameter in 'He of the container rotate at different rates, or
does move with the container, then gauge-wheel move with different velocities. If the order pa-
effects arise in many simple geometries. We rameter remains in local equilibrium with the
shall then set aside the assumption and derive nearby moving wall, then it can undergo distor-
one such effect using only two-fluid hydrodyna- tions as well as rigid-body rotations. In He-A,
mlcs ~ because the order parameter has a vector struc-

To understand gauge-wheel effects in He it is ture, these distortions can build up even when
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the initial configuration of the order parameter
is entirely uniform. In 'He, however, the order
parameter is a scalar phase, which must be non-
uniform if its motion with the wall is to alter its
form. ' The nonuniformity can be quite simple:
The presence of a persistent current in the initial
configuration is enough to produce gauge-wheel
effects.

As a simple example of this, consider two long,
coaxial circular cylinders, the space between
which is filled with superfluid 'He, the necessary
nonuniformity in the order parameter being pro-
vided by a nonvanishing circulation in v, about
the common axis z of the cylinders. ' When both
cylinders are stationary and the superfluid is in
equlllbrlum fox' the given clrculatlon~ then at any
instant of time the phase of the order parameter
is a monotonically increasing (multivalued) func-
tion of angle about the cylinder axis. If the phase
is plotted along the z axis over any cross-sec-
tional plane perpendicular to z, the resulting
graph is a. helical ramp which intersects each
cylinder in helices of identical pitch (see Fig. 1).
As time evolves the helices move uniformly along
the z direction at a rate determined by the uni-
form chemical potential [see Eq. (1)].

When both cylinders rotate together at the same
rate, then the assumption of rotating equilibrium
requires both helices to move with the walls,
thereby superposing on the uniform motion of the
graph of p determined by the chemical potential
the additional uniform motion characteristic of
the spiral on a rotating barber pole. Note that
the gradient of the phase, and hence the superflu-
id velocity v„ is completely unaffected by such a
rigid motion of the entire helical ramp: Rotating
equilibrium is fully compatible with the refusal
of a uniform supercurrent to participate in the
motion.

Gauge-wheel effects arise if only one of the
cylinders is set into rotation. The additional
"barber-pole" contribution to the rate of change
of the phase will then initially be communicated
only to the helium in the neighborhood of the mov-
ing cylinder. A radial phase difference will thus
begin to grow between the two cylinders, giving
rise to a growing radial component of v,. This
radial superf low will continue to increase until a
steady state is reached in which the effect of the
different rates of rotation of the cylinders on the
radial phase difference is balanced by the effect
of a rotationally induced radial chemical potential
gradient. In the steady state the radial v, will be
accompanied by an oppositely directed normal-
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FIG. 1. The phase in helium-4 when an azimuthal
supercurrent flows between two stationary cylindrical
walls. The phase qis a multivalued function of 0, and
independent of r and z. It is plotted along the z axis as
a function of ~. The resulting graph intersects the walls
in helices of identical pitch proportional to the magni-
tude of v~. If the outer cylinder is now set into rota-
tion (in the sense of increasing 0) then the graph of p
on the outer cylinder will move in the z direction as the
order parameter moves with the wall, leading to an
inwardiy directed radiai phase gradient. (Ignore the
uniform motion along z at a rate pl& of the entire
graph. )

fluid velocity v„ to ensure that there is no net ra-
dial mass flow, and there will therefore be a
temperature difference between the cylinders.
In the linear regime the size of the steady-state
radial velocity fields and the size of the tempera-
ture drop will be proportional to the initial rate
of relative phase change. This in turn is propor-
tional to the product of the circumferential speed
~ of the rotating cylinder with the change in phase
per cycle which is proportional to the circulation
of v, around the z axis. '

Precisely this effect is implied by conventional
two-fluid hydrodynamics. For simplicity we re-
place the concentric cylinders by plane walls
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perpendicular to the x axis at@ =0 and x =d. The
quantized circulation is provided by a y compo-
nent of v, that is independent of position and con-
strained to retain the value ~ throughout the ap-
proach to the steady state. We consider a geome-
try in v hich the wall at x=0 is stationary while
the wall at@ =d moves in the y direction with
constant speed ~. We seek a steady-state solu-
tion to the hydrodynamic equations in which all
quantities vary with position only in the direction
(x) perpendicular to the walls. The wall motion
gives the boundary conditions v„,(0) = 0, v„,(d) =w.
The absence of a transverse mass flow imposes
a second condition, v,„=—( p„/p, )v„„. A third
boundary condition is required to insure that any
resulting steady-state counterflow is internally
generated and not externally imposed. This can
be done by insisting on a thermally insulating
wall atx=0:

j'"" "(0)=Tsv„„(0)-KT'(0) =0,

where 8 is the entropy density, K the thermal
conductivity, and T' =dT/dx. "

We solve the hydrodynamic equations" when
the wall velocity w is small compared with the
superfluid velocity ~ parallel to the walls. If the
equations are linearized in w/v then there is no
spatial dependence to s, p„, p„and the dissipa-
tive coefficients to leading order. It is easily
verified that the Iinearized equations have a solu-
tion in which e„„,v,„, the pressur. eP, and the
chemical potential p, are all constant. " Be-
cause P and p, are uniform, the Gibbs-Duhem
equation reduces to

T'= p„vv„, '-/s,

which gives a temperature drop of the expected
form;

&T = T(a) —T(0) = (p„ /s) vw . (3)

The magnitude of the transverse normal flow
v„„ is related to the temperature gradient by the
rate equation for the entropy, which requires
(sv„„-KT'/T) ' to be equal to the entropy produc-
tion per unit volume. Since the entropy produc-
tion is of second order, this together with the
boundary condition on the heat current relates
v„„ to the transverse temperature gradient:

v„„=KT'/Ts.

The y component of the rate equation for the mo-
mentum density is solved by v„, = x/wd, which

with (2) and (4) gives

v„„=(Kp„/Ts'd)vm . (5)

The assumption that all velocities are small
compared with v leads to the condition Kp„w/Ts'd
«1, for the validity of our analysis. A second
condition is given by the rate equation for y mo-
mentum, where nonlinear terms will, in fact, be
small provided that p„v„„d/tl «1, where q is the
shear viscosity. With Eq. (5), this condition be-
comes (K/AT)(p„/s)'vw «1. The crudest order-
of-magnitude estimates [Ts-p„c',K-sc'r, q-p„c'v, where c is the velocity of (first or sec-
ond) sound and v is a relaxation time J reduce
these conditions to the modest requirements (w/
c)(cT/d) «1 and wv «c'. They also make AT un-
observably small. "

We sha11 not enter here into a discussion of
possible dynamical gauge-wheel effects in 'He.
We offer our steady-state gauge wheel of helium-
4 as a thought experiment designed to show that
the gauge wheel is not peculiar to 'He-A, and to
show that the rotation of the superfluid order pa-
rameter with the walls of the container is implicit
in the two-fluid hydrodynamics of helium-4 given
by Landau almost 40 years ago.
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in which the effect on the order parameter of a rotation
can be completely undone by a gauge transformation.
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We shall give a detailed justification of the assump-,

tion of rotating equilibrium in a forthcoming paper.
5We show in Ref. 4 that the assumption of rotating

equilibrium is, in fact, implicit in the derivation of two-
fluid hydrodynamics.

E. J. Yarmchuk et al. , Phys. Rev. Lett. 43, 214
(1979). (Note that the "photographs" were taken with
a "camera" that rotated with the helium. )

This difference between the two superQuids is re-
flected in the way in which the gauge-wheel effects man-
ifest themselves in the hydrodynamic equations. In
both superfluids a central role is played by a term that
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is sometimes overlooked, when insufficient care is
taken in specifying the variable that is to be identified
with the chemical potential. This point is discussed in
Ref. 4. In addition, because of the vector character of
the He-A order parameter, there is an explicit term
proportional to f Vxv„ in the equation governing the
time rate of change of the effective phase. This addi-
tional term is strongly emphasized in Ref. 1, but the
first term is also implicit in their discussion and can
produce fully comparable effects.

We emphasize that this circulation (which is the
hydrodynamical manifestation of the crucial nonuniform-
ity in the initial order parameter) is essential for the
appearance of the gauge-wheel effect. The circulation
distinguishes this geometry from ordinary superfluid
couette-flow experiments, which are not necessarily
carried out against a fixed background supercurrent.

The same effect will take place in the A phase of
superQuid helium-3 in the presence of a circulating
supercurrent, even when the anisotropy axis is radial.

In a nonlinear analysis the heat current at the oppo-
site wall is determined by the bulk entropy production.
In a linear analysis the entropy production is second
order and the thermal current can be taken to vanish
for all x.

We use these in the form given by I. M. Khalatnikov,
An Introduction to the Theory of Superfluidity (B«ja-
min, New York, 1965), p. 66.

We use the symbol p, to denote what Khalatnikov de-
notes by the symbol p. Since whatever name one gives
it, the quantity is determined by the hydrodynamics,
this change in nomenclature has no consequence for our
analysis. However we shall show in Ref. 4 that what is
conventionally called the chemical potential in many
treatments of superfluid hydrodynamics is, in fact, the
chemical potential in the local rest frame of the super-
Quid p~. This differs from the true chemical potential
p by terms of second order in v„and vs (@~p, +~v
-v„v, ) and for many purposes y and ga, can be iden-
tified. In the case of gauge-wheel effects the second-
order terms are of crucial importance, and one loses
considerable insight into the underlying physics by con-
fusing p, with p, . In particular, the fact that the two-
Quid hydrodynamics gives a constant p~ is not incom-
patible with our earlier assertion that the phase wind-
ing is balanced by a (true) chemical-potential gradient
in the steady state.

'3This does not necessarily imply that the temperature
drop remains unmeasurably small as M) increases,
though when w/v = 1, the fluid may respond through
vortex nucleation rather than by producing a chemical
potential (and hence temperature) drop. Note that from
this point of view gauge-wheel effects are cleaner in
He than in He-A, since the possibility for similar

complications due to textural motions is absent in the
more common superfluid.

Third-Sound Velocity and Onset on Grafoil

J. A. Roth, G. J. Jelatis, and J. D. Maynard
DePartment of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802

{Received 26 October 1979)

Third-sound velocity and onset measurements have been made for 4He adsorbed on
Grafoil foam. The third-sound velocity has a dependence on film thickness and tem-
perature similar to that of third sound on glass substrates, with some distinguishing
features. The film vapor pressure at onset has, to some degree, the universal tem-
perature dependence found for other substrates. The superfluid areal density divided
by the onset temperature agrees with the universal constant predicted by the Kosterlitz-
Thouless-Nelson theory to within lifo.

Recently there has been much interest in the
superfluid transition in adsorbed 'He films due

to the successful predictions of the Kosterlitz-
Thouless-Nelson (KTN) theory. ' Third-sound re-
sults and Andronikashvili pendulum results' are
in very good agreement with the prediction that
at the onset of superfluidity

(P.d/~) ....t = (2/~) (m/+)'& s,

where p, is the average superfluid volume density
in the film of thickness d at a temperature T, and
nz, 0, and kz are the helium mass, Planck's con-

stant, and Boltzmann's constant, respectively.
However, there has been some speculation as to
the applicability' ' of the KTN theory to helium
adsorbed on the graphite substrates Grafoil,
ZYX, and Grafoil foam. ' There are a number
of different experiments involving various sub-
strates, including Grafoil, which give to some
degree a universal temperature dependence of

film vapor pressure at onset. There is one pub-
lished set of Grafoil mass-flow data' which seems
to deviate significantly from the universal behav-
ior, and some recent unpublished data' ' give in-
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