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On leave from the Department of Physics, Univer-
sity of Bielefeld, Bielefeld, Federal Republic of Ger
many.

'V. Enss and B. Simon, "Finite Total Cross Sections
in Nonrelativistic Quantum Mechanics" (to be pub-
lished) .

We intend this to mean that there are only Coulomb
potentials but additional short-range potentials [O(~ ' '),
& & 01 are allowed without any significant change in
our results.

3If the cluster has inversion symmetry, this will be
the case unless there is a degeneracy of states of dif-
ferent parity.

4By this we mean that if our bound is Cg~, y is cor-
rect asymptotically, but not C.

'Our constants will be especially bad if the energy is
low or the interval of averaging small.

There is, at present, no definitive time-independent
approach for multiparticle Coulomb systems.

Except in the region where the Born series con-
verges.

W. O. Amrein and D. B. Pearson, J. Phys. A 12,
«469-1492 (1979).

~In addition, A. Martin [CERN Report No. TH 2662
(to be published) J has obtained a bound going for g
large as g4 for central potentials. For general r ' '
potentials we and Amrein and Pearson, Ref. 8, get a
g2 bound for large g. Also J. M. Combes and A. Tip
(private communication from Combes) have informed
us that they have a proof of (1) and (2) by different
means.
' W. O. Amrein, D. B. Pearson, and K. B. Sinha,

Nuovo Cimento 52A, 115-131(1979).
"While we have not checked it in detaiI, we expect

that the methods of Refs. 8 and 10 could be extended
to handle atom-atom scattering also.

'26eometric ideas have been used for some time in
rigorous scattering and spectral analysis f see espe-
cially, R. Haag, Phys. Rev. 112, 669-673 (1958);
G. M. Zhislin, Mosk. Mat. Obs. 9, 81-128 (1960);

P. D. Lax and R. S. Phillips, Scattering Theory (Aca-
demic, New York, 1967); A. G. Sigalov and I. M.
Sigal, Teor. Mat. Fiz. 5, 73-93 (1970) [Theor. Math.
Phys. 5, 990-1005 (1970)j), but they tended to be over-
shadowed by the power of time-independent methods.
Recently, geometric methods have been shown to be
extremely powerful in their own right, see, e.g. ,
V. Enss, Commun. Math. Phys. 52, 233 (1977), and
61, 285 (1978); B. Simon, Commun. Math. Phys. 55,
259 (1977), and 58, 205 (1978).

~3In all steps below the hz can be carried along and

8-independent bounds easily obtained. Moreover, the
estimates show that limp „II (S —1)g hz II exists.

'4ln potential scattering, the first inequality is actu-
ally an equality as a result of asymptotic completeness.
ln multiparticle systems, equality should hold, but
since we do not know rigorously that asymptotic com-
pleteness holds we use the inequality which is always
true. Equation (2) is just an interaction-picture for-
mula for S —1.

L. Hormander, Math. Zeit 146, 69-91 (1976); see
also M. Reed and B. Simon, in Methods of Modern
Mathematical Physics (Academic, New York, 1979),
Vol. ID. The original idea goes back to %. Brenig and
R. Haag, Fortschr. Phys. 7, 183-242 (1959).

~6There is an asymmetry (as there should be) between
requirements on falloff in the ~ and x-y directions.
Actually, a11 that is needed is

I &(x,~.~) I
~ c,(1+ I ~l) "' '(1+

I y I) "' '(1+ i~ I) ' '.
'~We do not take into account the effect of changing

the mass of the charge-Z projectile in our discussion.
' The possible effects of interference between what

has been scattered out and what remains in is accom-
modated by using (f II II dt) 2 rather than f II II

' dt.
"Using methods from F. Calogero, Vamawe Phase

Approach to Potential Scattering (Academic, New York,
1967), we have proven that for central potentials obey-
ing (1+x) "& V(x) &A.(1+ r) " there is a lower bound

behaving as g&.

Turbulent Modification of the m = I Resistive Tearing Instability
A, K. Sundaram and A. Sen

Physical Research Laborato~, Ahmedabad 880 009, India
(Received 16 May 1979)

In the presence of a random spectrum of 1ower hybrid waves, the m =1 resistive
tearing instability becomes an oscillating instability with a significantly enhanced
growth rate. For typical tokamak parameters, the growth time can become compar-
able to plasma disruption times for rather moderate levels of fluctuations.

Tearing modes are the subject of intense theo-
retical investigations these days because of their
importance in tokamak plasmas. ' They comprise
an important class of ideal magnetohydrodynamic

(MHD) modes of the internal kink type for which
the perturbations become resonant at the mode
rational surface, vrhere k ~ Bp 0 In this region,
it becomes necessary to take into account inertia,
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and nonideal effects such as resistivity to remove
the singularity, and the growth rate is found typ-
ically to depend on the resistivity. The evolution
of the instability is thus a sensitive function of
the dielectric response to the perturbation in the
singular region. Much attention is therefore paid
to delineating various physical effects that can
modify this response. ' In this Letter, we exam-
ine nonlinear modifications that can arise from
the presence of high-frequency microturbulence
in the background plasma and its consequences
on the evolution of the tearing mode. As a spe-
cific example, we consider the evolution of the
~ = 1 resistive tearing mode in the presence of a
saturated spectrum of lower hybrid waves. Low-
er hybrid waves are likely to be present in most
tokamak discharges as current-driven microin-
stabilities. This seems to be borne out by com-
puter simulation studies of anomalous current
penetration' in a plasma and also by some recent
measurements on the Microtor' and Alcator toka-
maks. ' They can also arise from external exci-
tations as in the case of rf heating experiments
in the lower hybrid frequency range. Physically,
the random spectrum of these fluctuations acts
as pump waves which can parametrically drive
or suppress the tearing instability through the
nonlinear ponderomotive force effect. Mathemati-
cally, this nonlinear term modifies both the equa-
tion of motion and Ohm's law in the inner layer.
Adopting a variational technique, we obtain a
modified dispersion relation for the ~ = 1 resis-
tive mode and solve it analytically in convenient
limits. The presence of the fluctuations permits
a larger number of modes to be excited, includ-
ing a slowly growing quasimode which is purely
driven by the turbulence. However, the most in-
teresting result is that, instead of the purely

growing resistive modes, there now arises a
mode with a large real frequency and growing at
a greatly enhanced rate. The mode has a broad
spatial structure, typically of the order of the
tearing layer, and the growth time can become
comparable to disruptive time scales (of order
10 ' sec) for rather modest levels of fluctuations.
Hence this mode may be important from the point
of view of understanding major disruption proc-
esses.

Our calculations are based on the simple MHD

model for the resistive tearing mode carried out
in a cylindrical geometry with an equilibrium
field, B,=(O, Be(r), &,). We assume the existence
of an equilibrium electrostatic lower hybrid (LH)
field,

y, (r, t) =+peak expi(k r &ut)+—c.c.
The summation is over a spectrum of LH waves
so that each (~,k) satisfies the dispersion rela-
tion

&' = ~L H'[1+ (&,'/& ')(m,./m, )],

where v«=re~;(1+co~, '/0, ') '" is the lower hy-
brid frequency and other notations are standard.
Assuming the level of fluctuations to be low, so
that only terms to order

l yyl' need be retained,
we consider the interactions among the low-fre-
quency tearing mode (0, q) and the sideband LH
modes at 0+ w, q + k. Since the tearing mode we
are considering has no density perturbations, the
dominant nonlinear contribution to the sideband
equations arises from the terms (Vr ~ V)V&„and
V„„&&B~ in the equations of motion. Here V&H is
the LH-pump-induced high-frequency velocity
fluctuation and V~, B~ are the perturbed velocity
and magnetic field of the tearing mode. The side-
band potentials are then given by

k, k ~ B~ 1 k~ m„~ V~ y~/e+ (2)

where e, = k, '[co,' —u!'(k,)] with v'(k, ) satisfying
Eq. (1). In deriving relation (2), use is made of
the adiabatic approximation

I ql « lkl and
I ~l « leo I.

To describe the tearing mode we use the single-
fluid MHD equations and the Maxwell equations.
The MHD equations are derived from the two-
fluid model with the addition of appropriate non-
linear coupling terms. The predominant nonlin-
ear coupling term is the (Vz ~ V)V~, term in the
electron equation, where V~ is the E&& B drift
velocity experienced by the electrons in the I H

! field.
We also make the usual incompressibility as-

sumption' (V Vr = 0) thereby ignoring the propa-
gation of magnetosonic waves which evolve on an
Alfvenic time scale, i&=a/V„(a is the plasma
radius and V„ is the Alfven speed). We next
transform the quantities V~ and B~ by the famil-
iar substitutions, Vr = 5 X &y and Br = SXVg, and

seek mode perturbations of the type g(r) expt-(m8

+q, z —0 t). Then, following standard procedures, '
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we derive a modified set of inner-layer equations: inate cp to obtain a single equation in E:
d 7 dE ( dE—f(x) —+1 p- ——+E(1-x ') =C„

dxi dxJ & x dx
(5)

&7) ( $1d d2
q + =o

I 1+~1,+ —(q+Sp)+p, , (4)x & x/ dx' x dx

where P = y /x „V„, g = g/B, x „, ri = i ric'/4m&x A',

so rs/xA& x (r rs)/ xA& xA 0/q 11'VAs and q is
the classical resistivity. Furthermore, q~~(r)
=q, +Be(r)/rB, and q~~' =dq~~/dr at the mode ra-
tional surface, r~. The quantities p., v, n, and

P are the turbulent contributions and will be dis-
cussed a little later. Defining a new variable,
E =xdg/dx —(, we integrate Eq. (3) once and elim-

where f {x)—= (I/x') (q + S,p) + (1/x) (p —S,o ) —cI and

C, is a constant. In the limit p=v=o. =P=O, Eq.
(5) agrees with the one derived by Hazeltine and
Strauss' for the gyes

= 1 mode. We note that, for
large x, the solution of Eq. (5) is unaffected by
the turbulent terms and hence, as shown by Ha-
zeltine and Strauss, ' the constant C, must be set
equal to zero, to ensure proper matching with
the outer-layer solutions. Thus, we only need to
concern ourselves with the homogeneous part of
Eq. (5). We proceed to solve it by employing a
variational technique. ' For this, we first con-
vert it into a self-adjoint form by writing E
=f '"E,exp[I (p - v/x) dx/f ]. It can then easily
be shown that the functional

&dE, ' I( 1 1f" lf' 1(p —v/x) 1 v+ —11-—, ——+—,——,——,E,' dx(dx f ( x' 2 f 4f' 4 f' 2x'f (6)

is variational, in that 5$ = 0 yields the differential equation for E,. Choosing a trial function, E,=f ' '
x exp(- yx'/2) with Re(x/x A') & 0, we evaluate S as

$(y) =x "'[1+p'/2o +p(2+ v+ —,'o) —(6+S,p)X']

+ —,'[(p —S,a)'+4m(j+S, p)] "' [(v —px, )'Z(x,A) —(v- px, )'Z(x,A)],
where x» are the roots of the quadratic equation f (x) = 0, and Z (x) is the plasma dispersion function.
A simultaneous solution of $(X) =dS/dx = 0 will now give us the dispersion relation. To obtain such a
relation, we need to evaluate the nonlinear terms. We write down the expression for one of the non-
linear terms, e.g. ,

(6)

Since
1 ql «

1 k! and !Q!«!cu!, we can expand 6=6(Q+ co q'+ k) around (+,k), to obtain

[n(B/B~)+q (B/Bk)]2~
e e (Be/B(u)'(0 — ~ V )' 2k '((u' —a) ')

where V„=—(Be/Bk)(Be/B~) '. In general, 0«q ~ V„unless very special conditions hold, such as the
tearing surface coinciding with the local lower hybrid resonance layer (&, =&uL„). We therefore consid-
er only the nonresonant type of interaction. The nonlinear coefficients then simplify to

E &, i

(rn;) &&,(oqHxA ~ ug' III' ' " cq, '
clqgl

Furthermore, for typical tokamak parameters in the collisional regime, T, ~ 10 eV, B,-25 kG, rgo-10'4 cm ', a/R =
& and moderate levels of LH fluctuations,

(10)

IV„/noT =k~'1 yI! /(8mnoT) & 10

it can be seen that 7I «S, P. This condition implies that k~'ly„l'/B, '&qA, k, /4gk~q, r~ Then the root. s
of f (x) become x, = P/o and x, = —So. With these simplifications, we can obtain analytic expressions

324



VOLUME 44~ NUMBER 5 PHYSICAL REVIEW LETTERS 4 FEBRUARY 1980

for the dispersion relation in two limits by expanding the Z function for large or small arguments. We
obtain

=o «r IS,K~I «1.
(1-,', 1+@+0 S, — ' =0 for IS,&txI »1,

OC g Cgz

2 , 2

2Cgz

(10a)

(10b)

Physically, these two limits correspond to mode widths x~ =xA/v X smaller or larger, respectively,
than x„, the tearing layer width. It is now straight forward to solve Eq. (10) to obtain the various
roots and we discuss them briefly here:

The first factor in Eq. (10) yields quasimodes which are driven solely by fluctuations. For example,
from the factor in Eq. (10b), we get typically

Iq, lr, (' ~, '
+ lk, 'llpkl'

4' 0, i, c'q, ' -
I k, I B,'

The corresponding root from Eq. (10a) is quite
similar except it does not have the factor of 1

/c'q, ' multiplying the q, r~ term. The tur-
bulent terms in y easily dominate rl/4m for rath-
er small levels of fluctuations (W,/n, T - 10 ')
and typical tokamak parameters. The condition
for instability for mode (11) is thus u&~;/cq, & 1.
Since co~, /(cq, )- 4.4x 10 'RKn„where R is the
major radius, this condition is easily satisfied
for moderate sized machines (R-30 cm) and typ-
ical tokamak densities of -10"cm '. For W„/
n, T- 10 ', with qII'-a ' and with use of the pa-
rameters quoted earlier, the mode growth rate
is of the order of - 10' sec ' with a correspond-
ingly large real frequency. The growth rate time
is thus comparable to disruptive time scales for
rather modest turbulence levels.

To summarize, we have discussed an important
nonlinear effect that can influence the evolution
of tearing modes whenever there is a background
of microturbulence. For the ~ = 1 resistive tear-
ing mode, we have shown that a modest level of
lower hybrid wave turbulence can significantly en-
hance the growth rate as well as introduce a
large real part to the mode frequency. It is im-

. portant to point out that in these calculations we
have highlighted the modification induced by the
nonlinear coupling and have neglected effects that
might arise from a more complicated formulation
of the linear theory of tearing modes. For exam-
ple, the inclusion of diamagnetic effects in the
linear theory would impart a real part to the

O'll' ~A ~
~ a~m ~'

!mode frequency of order cu (the diamagnetic fre-
quency). However, for the collisional regime we
have considered this is typically of the order of
10' sec and is thus much smaller than the nonlin-

early induced real part. Similarly in the limits
discussed above, we have assumed that the spa-
tial variations of x'f (x) [where f (x) is in some
sense an effective resistivity] are mainly deter-
mined by the turbulence terms rather than by the
spatial dependence of the linear resistivity, g.
Such an assumption is valid when ki'I y, 'I/B, '
&rl&,k,/4mkiq, r ~, a condition easily met for the
typical parameters chosen here. The nonlinear
modification would also be important for tearing
modes in other regimes. There is some evidence
of such effects in the weakly collisional regime
from computer simulation studies where propa-
gating magnetic islands have been observed along
with the presence of lower hybrid turbulence. We

are, at present, examining the ~ ~ 2 modes and

extending our calculations to the collisionless re-
gime including the effects of diamagnetic drifts
and spatial variations in g. These results will be
pr esented elsewhere.

'H. P. Furth, P. H. Rutherford, and H. Selberg,
Phys. Fluids 16, 1054 (1973); J. F. Drake and Y. C.
Lee, Phys. Fluids 20, 1341 (1977); P. H. Rutherford,
Phys. Fluids 16, 1903 (1973); R. B.White, D. A.
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1 . ..I, m, (uLH ~ lk 'I ki'lq&k I'
m, n, - lk 'lq, l B,'

which for moderate levels of fluctuations is comparable to classical resistive growth rates. The cor-
responding quasimode from Eq. (10a) is a damped one. Both these modes also have comparable real
frequencies. The second factor yields turbulence-modified versions of the tearing mode [for p = 0 one
can recover the classical result, '

y = (qc'/4z)'i'(q»'V„)"']; typically again, from Eq. (10b), we get
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Monticello, M. ¹ Bosenbluth, and B. V. Waddell,
Phys. Fluids 20, 800 (1977); a more complete list is
given in a review article by B,. D. Hazeltine, U.S. De-
partment of Energy Report No. HCP/T4478-01, 1978
(unpublished) .

S. M. Mahajan, B,. D. Hazeline, H. B,. Strauss, and
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1058 (1979).

3A. T. Lin and J. M. Dawson, Phys. Fluids 21, 109
(1978).

4G. J. Morales, B. D. Fried, and B,. J. Taylor, Bull.
Am. Phys. Soc. 22, 180 (1977).

A. A. Oomens et al. , Phys. Rev. Lett. 36, 255 (1976).
6H. P. Furth, J. Killeen, and M. ¹ Rosenbluth, Phys.

Fluids 6, 459 (1963).
~R. D. Hazeltine and H. R. Strauss, Phys. Fluids 21,

1007 (1978).
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Effect of Pulse Duration and Polarization on Momentum and Energy Transfer
to Laser-Irradiated Targets

B. Arad, S. Eliezer, S. Jackel, A. Erumbein, H. M. Loebenstein, D. Salzmann,
A. Zigler, H. Zmora, and S. Zweigenbaum

Plasma Physics DePaxtment, Sot'eq Nuclear Research Center, Yavne 70600, Israel
(Received 29 October 1979)

Polished aluminum targets were irradiated with 1.06-p, m laser pulses of 60-psec and
2.5-nsec duration and of z and o polarization. The peak focused intensity was varied
over the ra~~e 10'4-10'~ W/cm2. Clear evidence of resonant absorption for 60-psec
pulses was obtained from target momentum measurements made with a torsion pendu-
lum. No resonant absorption effects dependent on light polarization or angle of incidence
were detected for long-pulse irradiations.

A necessary condition for successful laser-
induced fusion is the efficient absorption of laser
light in the coronal plasma surrounding the tar-
get. Equally important, however, is the coupling
of this absorbed energy to the dense target mater-
ial so that inward directed momentum will be
imparted to compress and heat the fusion fuel.

Efficient laser-light absorption is believed to
occur through the process of resonant absorp-
tion. ' In experiments conducted with short-du-
ration laser pulses (r & 100 psec), increased la-
ser light absorption' and momentum transfer'
have been observed with conditions optimized
for the resonant absorption process. Current
and planned laser fusion experiments, however,
require much longer laser pulses (i=1-10 nsec)
and it is important to determine in this regime
whether or not resonant absorption exists and if
it will improve the efficiency of momentum trans-
fer to the target.

This Letter deals with the experimental deter-
mination of the resonant-absorption contribution
to the momentum imparted to targets irradiated
with short (60 psec) or long (2.5 nsec) laser
pulses. The targets, polished aluminum slabs,
were irradiated at oblique incidence with high-

focused-intensity (10' -10"W/cm ), w and o
polarized, 1.06-p, m wavelength laser light. (The
target was always placed within the 10-p.m-diam
diffraction-limited focal spot of the f/5 conver-
gent cone of light. ~) The primary diagnostic was
a torsion pendulum which measured the momen-
tum imparted to the target. ' Supporting data were
provided by charge collectors (Faraday cups).

Figure 1 shows the experimental results. The
ratio of momentum to incident energy (P/E) has
been plotted as a function of incident intensity.
Each point represents an average over 3 shots
within an intensity bin extending + 15% from the
plotted data point. Absolute calibrations for the
momentum and energy measurements are accu-
rate to+10% and+5%, respectively. The lines
are curve fits to the data obtained from equations
of the form P =A.E".

The ratio P/E provides a measure of the mo-
mentum coupling efficiency to the target. For
60-psec pulses, the coupling efficiency is 35%
greater for m than for 0 polarization. The coup-
ling efficiencies are independent of focused in-
tensity. For the 2.5-nsec pulses there is no dif-
ference between m and o polarizations and the
momentum coupling efficiency decreases with in-
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