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Then-d and n-(np), —
0 triton s wave asym-ptotic normalization constants are calcu-

lated from a realistic one-bosom-exchange model of the AV interaction. Both parame-
ters are calculated from integral relations which make the analytic continuation to the
pole unambiguous. The values obtained are Cq = 2.60 and G, ~ -0.69.

The subject of triton asymptotic normalization
constants has received considerable attention in
the literature recently. ' Apart from the accepted
usefulness of these quantities in the analysis of
direct reactions' involving tritions, it has been
proposed that these numbers provide a discrimi-
nating test of triton wave functions obtained from
realistic models of the NN interaction. ' The pur-
pose of this Letter is to present the values of the
'H -n+ d and 'H -n (n+p), , s-wave asymptotic
normalization constants, designated C, and C„
respectively, calculated from a one-boson-ex-
change (OBE) representation of the NN interac-
tion. To our knowledge, it represents the first
calculation of C, ' with a realistic NA' potential4
and the first OBE-model calculation of C,'.'
Furthermore, we stress that the C, ' defined un-
ambiguously by analytic continuation to the sec-
ond-sheet pole has not yet been extracted from
experiment and a method to do it remains an open
problem. Also, we show how to calculate the

quantity called C('H, d*n)— '.he "effective" 'H - n

+(np), 0 asymptotic normalization by Plattner,
Bornand, and Viollier (PBV)' and give its value
as predicted from our wave functions.

The'OBE model of the NN interaction which we
use is one developed by Holinde and Machleidt. '
This interaction gives an excellent account of the
low-energy NN parameters (a, = —23.83 fm, r„
=2.703 fm, e, =67.6 keV; a, =5.50 fm, r«=1.87
fm, e, = 2.225 MeV) and the NN phase shifts.
Moreover, it leads to a somewhat better descrip-
tion of the triton than does the Reid soft-core po-
tential (RSC).' With the OBE interaction effective
in the 'S, and 'S,-'D, states, solving the complete
set of Faddeev equations, we get E,=7.38 MeV
for the 'H binding energy and a triton charge form
factor in marginally better agreement with the
data. This H wave function, including all its
components, we normalize and use in the calcula-
tions.

The asymptotic normalization constant C, is de-
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fined from the 'H wave function in the standard manner:

4' ~' (p r) „= C, (2(Y )' 'p 'exp(-o, p)[[ Y( j(p) x X(i) (' ') ]~~'jx4' ('j(r)j(' 'j3)'(1 23)/v2

where p and r are the coordinate variables conjugate to the Lovelace momenta, ' o, ,'=m(E3 —E,), m is
the nucleon mass, E3 and E3 are the triton and deuteron binding energies, respectively, 4'„('j(r) is the
deuteron wave function, and )((r() is a spin (isospin) function. In momentum space, this limit can be
written as

[x/2] I'x] I I/2] a, '~' 1 q'(I, 23)
q)((1) 1 ~ ) q3 -n t 3 3

m q +ot

where q is conjugate to p. If the projection on the left side of Eq. (2) is formed with 4('~'j replaced by
its expression from Faddeev's equations, we get an equation for calculating C, by matching residues
on the left-hand and right-hand sides of Eq. (2):

C, = 3(w/3n, )'~' J q'dq f,dx y„(p,)S(p„q)[34")(p q. 1) —e")(p q 2) j (3)

where g, (p) is the s-wave component of the momentum-space deuteron wave function; b(p, q) = mE3+p'
+ q'; the 'H wave function components 4(')(p, q; 1) and 4' ')(p, q; 2) correspond to nucleons (23) in spin
states S=O and 1, respectively; p is conjugate to r; and p, '= 3(4q' —u, '+i4u, qx) while p3 —3(q3 —4(Y&3

+i4(Y, qx). Integral relations of the form given by Eq. (3) were first derived by Lehman and Gibson'0
(see also Kim, Sander, and Tubis").

From Eq. (3), it is clear that both (j, and the 4(')'s are required with complex arguments. In the
former, the continuation is defined by the homogeneous Lippmann-Schwinger (LS) equation, while in
the latter the continuation of the two-nucleon t matrix required in the kernel of the Faddeev equations
is defined from the inhomogeneous LS equation. Limited space prevents us from giving further details,
but the procedure follows straightforwardly from Eq. (3).

At first glance, the generalization of Eq. (3) to the singlet case is not obvious, because the function
which replaces the deuteron wave function is not normalizable, "thus leaving the scale indeterminate.
However, the unique singlet function with its proper normalization can be found in analogy with an alter-
native procedure for obtaining the deuteron wave function. The properly normalized deuteron wave
function in momentum space can be obtained from the half-shell (s-wave) NN triplet f matrix as follows:

(4)

where the deuteron binding energy is e„=y, /m and the deuteron asymptotic normalization constant
C,(') = (1-y,y«) '~'. Then C, for the triton can also be obtained from the vertex amplitude for 'H —n

.+(np), ,:
i/2

t +tVt k
Q $Qt

where, in general,

(5)

In Eq. (6), + is a NN scattering state with relative momentum k, V& is the NN interaction, and all
spin-isospin quantum numbers are subsumed in the index p. Now, the definition of C, can follow sys-
tematically.

The singlet-channel asymptotic normalization constant is defined in analogy with Eq. (5):

lim (k +iy, )E (k, q; P,),
Cs &3&a&s & k - &ys

ns

where iy, (y &0) i-s the location of the pole (on the second Riemann sheet in the energy plane) in the
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NN singlet half-shell t matrix. Explicitly, we can write
1/2

C, =- q'dq dx, , & „q 4 'i „q;1 —M~'~ „q;2
s

(10)

then R,(P) satisfies the LS equation

(p) /01(p '
) p/3dpi (PtP ) .e(P )

s ~+s ~,.+y, '/m

This follows from unitarity which gives us the f matrix on the second sheet (II) in terms of the f ma-
trix on the first sheet (I) in the energy plane:

2 i(-y,)'" I'm „(k+ r.)&PI t" N ')Ik&
(9)

s +rs

C, ' = (1+y,y„) "', and p, '= —', (4q' —o,'+i4a, qx) while p3'= —,'(q, —4n, '+i4o. ,qx). From a computation-
al viewpoint, 'the key quantity is the residue at the antibound-state pole, R,(p). Specifically, if we de-
fine R,(P) such that

q, (P) = —4riy, C, mR, (P)/(P +y, ),

s

Near the pole, we can use k cot5, = —1/o, + 3ro, k' which gives

lim (k+iy, )(p!t '(E~+)!k) =i2y, [C, ] R,(P).
n -iy 5

(12)

(13)

Two points should be noted: (1) (,(p) is a purely
imaginary function which implies that C, is pure-
ly imaginary or C,'& 0 (Ref. 13); (2) the normal-
ization (or scale) of g, (P) is as though the un-
bounded spatial function were normalized with
the integral defined by discarding the infinite
contribution from the upper limit. '

Using Egs. (3) and (8), we obtain the values C,'
=2.60 and C,'= —0.6S for the OBE model. As can
be seen in Table I, the OBE value for C,' is con-
siderably smaller than the other realistic poten-
tial calculation of Kim and Muslim for the RSC
which implies that C,' is model dependent. Un-
fortunately, no consensus has been reached on
the experimental value of C,' (see Table I and
Locher and Mizutani"). Unanimity for the em-
pirical value is important in order that the model
dependence of C,' can be better understood. As
far as C,' is concerned, the only theoretical val-
ues available are for triton wave functions de-
rived from simple parametrizations of the NN
interaction, 4 e.g. , separable potential (Y), Bres-
sel-Kerman-Rouben (BKR), Malfliet- Tjon (MT),
and Darewich-Green (DG). Our OBE result is
comparable to the BKR value, but more impor-
tant is the fact that C,' is even more model de-
pendent than C,'. This emphasizes the signifi-
cance of developing a method whereby C,' can be

TABLE I. ~H asymptotic normalization constants.

2 Cs2

Theory
OBE
B,SC
Y
BKR
MT
DG

Experiment
PWDB
FDQ

2.60+ 0.08
3.15
3.81
2.48
3.81
3.16

3.3+0.1
2.6+ 0.3

-0.69+ 0.02

-0.23
-0.74
-0.02
-0.01

This work
5

4
4
4

1
15

'Includes estimated numerical errors.

!extracted from experiment.
As mentioned above, PBV have defined an ef-

fective asymptotic norm, C'('H, d*n), which they
extract from experiment for 'He by a dispersion
analysis of p-'He elastic scattering. Their anal-
ysis amounts to approximating the cut contribu-
tion from the singlet two-nucleon exchange ampli-
tude by a pole. In our notation, the singlet two-
nucleon exchange amplitude is

fI) OQ 'd3k I ( s Q&P~)l (14)2mB' „,„E,+q,/m +k'/m '
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where E(k, q; p, ) is defined in Eq. (6) and )i is the
p-'H reduced mass. To compare the OBE model
with the PBV analysis (which is only qualitative
because of Coulomb effects), we note that for low

q, 0'lEl' is strongly peaked at k =y, . Therefore,
we write

which gives

C'('H, d*n) = 2m'c'l~(t p.)I'/~~2~~'p. ,

where P,'=mE, +y, '=0.1795 fm '. The value we
obtain is C'('H, d*n) =6.50 which is comparable to
the PBV value C'('He, d*p) = 5.85+ 0.25, but dis-
tinct from it in the location of the pole. PBV ob-
tain an "effective-pole" location shifted by - 1.3
MeV, i.e. , Po'=0.2092 fm '. With P,' equal to
the latter value, we obtain C'('H, d*n) = 14.35.
Clearly, C,' is the more fundamental quantity
since C'('H, d*n) depends critically on the effec-
tive-pole location. "

In this Letter, we have given the 'H s-wave
asymptotic normalization constants for a OBE
NN interaction calculated from integral relations
which avoid extrapolation methods. We found
that the OBE triplet asymptotic norm is = 17'
smaller than the RSC value. At present, both
the OBE and RSC value fall within the extremes
of experimental determinations, thus emphasiz-
ing the need for a more accurate empirical value
so that conclusions can be reached about the the-
oretical predictions. Also, we emphasize that
the singlet asymptotic norm is an even more sen-
sitive quantity than the triplet, but has yet to be
extracted from experiment. Our OBE value rep-
resents the first calculation of this parameter
for a realistic NN interaction. It would be valu-
able to know the RSC result. Finally, we demon-
strated that the "effective" 'H» d*+n asymptotic
norm as extracted by PVB for 'He is quite sensi-
tive to the location of the effective pole which de-
creases the value of this parameter and empha-
sizes the significance of the true singlet asymp-
totic norm.
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