
VOLUME 44, NUMBER 4 PHYSICAL REVIEW LETTERS 28 JANUARY 1980

Prompt Muon Production at Small XF and PT in 350-GeV p-Fe Collisions
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Total prompt muon production rate for muons with Q,b & 8 GeV has been measured
in 350-GeVP -Fe collisions. A prompt rate of (3.29+ 0.45) && 10 4 per collision is deter-
mined, yielding p, /7t = {0.93+ 0.13)&& 10 4. The p/& ratio does not show the rise at small
XF and small I'z seen in intersecting-storage-ring electron/& measurements. A charm
production cross section of 22+ 9 pb/nucleon is extracted from the contributions of
prompt single muons to the total prompt rate.

Experimental measurements of prompt elec-
tron production at ISR' (vs = 53 GeV) and also
BNL' (vs =4.5-7) energies have indicated a large
increase in the prompt electron/pion ratios for
low transverse momentum (Pr) in the central re-
gion (Feynman XF -—0). We report on the first
measurement of promjt muon production in this

region.
The apparatus (Fig. 1) is a modified version of

a detector used in an earlier prompt-muon ex-
periment' which established that prompt single
muons account for about half of all prompt muons
in the region Pr =1GeV/c, and—indicated a
charm production cross section in the range 13-
60 tLb/nucleon. The apparatus was modified to
extend the study to low X& and low I'~. %e pre-
sent results from data obtained during a one-
week run.

The experiment was performed in the Fermilab
N5 beamline with about 1x10 350-GeV protons
per pulse. The incident protons interacted in a
target-calorimeter which consists of 49 (76X 76
cm') steel plates (a total of 2.44 m of steel)
which are independently mounted on rails so that
the interplate spacing can be varied. The calori-
meter was followed by a muon range detector con-
sisting of 88 3.05-mx3. 05-m~5. 08-cm steel
plates interspersed with 42 3.05-m ~ 3.05-m &3.2-
cm liquid scintillation counters with wave-shif ter
light collectors, and 22 3.2 &3.2-m' spark cham-
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FIG. 1. Plan view of the apparatus. The beam is
incident from the left. A dimuon event is shown to il-
lustrate the spark-chamber locations. In addition to
the 22 3 x 3-m spark chambers, the 360-ton range
detector (Ref. 5) contains 42 3&& 3-m scintillation
counters.

bers with magnetostrictive readout. ' The amount
of light for each muon in the scintillation counters
(fifteen photoelectrons) was sufficient to allow dis-
crimination between one and two muons by use of
counter pulse heights alone. Additional compo-
nents of the detector (e.g. , muon spectrometer,
etc. ) are not described here since they were not
used in this analysis.

The trigger required a proton interaction in the
calorimeter in coincidence with a muon that pene-
trated at least 5.75 m of steel. Because of the
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large size of the range detector, this trigger ef-
fectively selected all muons of momentum P„&8
GeV, corresponding to almost the entire forward
hemisphere in the center-of-mass system (Fig. 2).

Most muons satisfying this trigger were due to
the decay of pions and kaons. This nonprompt
background was measured by uniformly expand-
ing the first 38 plates (1.68 m of steel) of the
calorimeter, thereby proportionally increasing
the mean path length and decay probability of had-
rons in this region. Data were taken at three dif-
ferent densities: fully compacted, expanded by a
factor of 1.75, and expanded by a factor of 2.5.
The mean density of the compacted calorimeter
is about 4 that of steel since there are gaps be-
tween plates where scintillation counters are
mounted. Because of the large size of the muon

detector the trigger acceptance is independent of

density. The use of two independent muon trig-
gers insured a constant trigger efficiency.

The muon event rate (i.e. , events with at least
one muon with P „&8 GeV) per interacting proton
exhibits a linear dependence on inverse density,
p (Fig. 3). The intercept at 1/p=0 of (3.95+0.40)
x10 4 is the prompt rate. (The effect of nonlinear-
ity due to hyperon decays is less than 1% of the
prompt rate. ) However, to get the total rate,
events with two muons both satisfying the require-
ment P„&8GeV must be counted twice. This

rate, determined with use of the scintillation
counters in the range detector after correlations
for accidentals, ' is (0.94+ 0.01)x10 4, giving a
total prompt muon rate of (4.89+ 0.40) x10 4 per
interacting proton. This rate has been corrected
for a density-independent background [(8+ 4)%]
from decays occurring downstream of the ex-
panded region. This contribution was determined

by a measurement in which only the downstream
portion of the calorimeter was expanded.

The above quoted rate is for a thick target and

includes contributions from secondary and terti-
ary hadron and photon interactions. To extract
the contribution of the first collision we have per-
formed a shower-development calculation based
on radial scabng parametrization of particle pxo-
duction data from hydrogen' modified for nuclear
effects. The contribution from secondary and

tertiary interactions was calculated' to be (1.60
+ 0.2) x 10 ', and subtracted from the total prompt
muon rate. The remaining rate of (3.29+ 0.45)
~10 ~ is the prompt-muon rate for primary colli-
sions. We can express this rate as a (p,'+ p, )/
(x++m ) ratio by dividing by the number of s's
(with P, & 8 GeV} produced by each primary pro-
ton collision. The number of m''s of 3.55, ex-
tracted from the measured nonprompt muon rate
and the shower development calculation, "yields
p/m =(0.93+0.13}x104. The errors here are sta-
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FIG. 2. A calculated spectrum. of pions produced in
350-GeV p-Fe interactions with I'~ & 8 GeV, vs XF and

Pz . The acceptance of the experiment covers almost
the entire forward hemisphere in the center of mass,
except for a small region around the point XF = 0,

E'z = 0. The region covered by the ISR 30' direct
electron experiment is shown for comparison.
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FIG. 3. The event rate vs inverse density. The
extrapolated rate is the prompt signal. Curve &,
events with at least one muon with P& & 8 GeV; curve
6, events with two muons each with P& & 8 GeV.
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FIG. 4. The pl~ ratio measured in this experiment
(P -Fe at 350 GeV) compared with (a) ISH p-P direct
electron data at small XF vs I'z (Hefs. 1 and 23), and
(b) prompt-muon data at small I'z vs XF (Ref. 12) .
The dataof Kasha et. (Ref. 12) (P-Cu) is at 400 GeV
and of Branson et &. (Ref. 12) (P-Fe) is at 200 GeV.
The experiment of K. %'. B. Merritt el; al . (H,ef. 12)
(P -Fe, 400 GeV) was performed with an earlier ver-
sion of our apparatus.

tistical. However, fairly conservative assump-
tions" yield an upper limit of 1.38&&10 ' and a
lower limit of 0.78x10 ~. The measurement is
consistent with the trend of other p/w data" at
higher values of XF as shown" in Fig. 4(b). In a
similar Xz and Pr region, ISR 30' data [Fig. 4(a)]
indicate that the average'4 e/m is (between 3.2 and
4.8) x10 4. The trend of the ISR 90' data" is in
agreement with our measurement.

%e now discuss possible sources of the factor
of 4.3 difference between our p/n results and the
30'ISH e/n measurements. If all the difference
were attributed to nuclear effects (P-Fe vs pP),
then the A dependence of prompt muons at small
XF and smallPr would have to be A'4' (i.e. ,
much less than the inelastic cross section which
rises as A'"). Such as unusual A dependence is
unlikely. For example, the A dependence of m

production (for m's with P, & 8 GeV) is A'" yield-
ing only a 30Vo difference between p-Fe [3.55 m''s

(Hef. 8)] and PP [2.45 w's (Ref. 7)I interactions.

Also, at higher XF (XF ~ 0.1) the A dependence
for p. 'p. pairs has been measured" to be -A""
for low I

& &
and A" for high M».

Another possibility is that the difference is due
to the larger ISR center-of-mass energy. This
explanation initially appeared unlikely since a
low-energy' experiment also indicated a large e/
m ratio. However, the experimental situation at
low energies is somewhat unclear since more re-
cent low-energy experiments" indicate a small
e/m ratio. We conclude that s-dependent effects
cannot be ruled out.

Finally, it is possible that the source of low-P~
electrons does not yield a corresponding rate of
low-I'~ muons. This would be the case if the low-

Pr electrons were from low-mass pairs (because
of the muon-electron mass difference) rather
than from, for example, charm decays. Baum
et ql. ,

"on the basis of their e p, measurements,
have concluded that charm production" is not the
source of the large direct-electron rate. Since
they veto on very low-mass e pairs, they con-
clude that the source of direct electrons at low

P~ is e'e pairs with m„&0.1 GeV. Recently, it
has been suggested" that backgrounds from copi-
us low Pr q p-roduction at ISR energies (q-eey,
B=0.5/o vs q- ppy, B=1. 5x10 4) could be larger
than originally estimated by the ISR experimen-
ters. A. source such as this could account for the
difference between our p/m and the 30' ISR e/m re-
sults. If future measurements indicate that low-
P~ q production at ISR energies is not copious,
then the difference between the two results may
imply a new unknown source of prompt electrons
at ISR energies (assuming there is no breakdown
of p, -e universality).

The data can also be used to estimate the had-
ronic charm production cross section. A pre-
liminary separation of one-muon and two-muon
events (with use of only the scintillation counters)
yields a prompt single-muon rate" of (1.15+ 0.5)
x10 ~ per interaction. Using an acceptance" of
39+ 1%, we estimate" a o',„„of22+9 pb/nucle-
on assuming linear A dependence [o,(p-Fe) = 13
mb/nucleon] and a semileptonic branching ratio
of 8'L We will report on our charm-production
studies in a future publication following a com-
plete analysis of the single muon and two muon
distributions.
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