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fact it is »ot a unified gauge theory. This is be-
cause its tangent group is a product group H
=0(3, 1) ®O(N). In analogy to the framework of
grand unified theories, supergravity resembles
the nonunified theory of SU(3)°»SU(2) ®U(1) rath-
er than unified theory such as SU(5) or O(10). In
usual gauge theories, a product invariance group
is the symptom that a spontaneous breaking has
already occurred. As mentioned above, the
vacuum state and tangent symmetry of super-
gravity can indeed be thought of as arising from
the spontaneous breaking of the truly unified Rie-
mannian space with tangent group 3¢ =0Sp(3,1|4N).
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It is found that nonspectator interactions between ¢ and d quarks in the A, * give a
substantial enhancement of its decay rate. The lifetime relation 7(A.*)/7(D*) =11 +{D*)/
(3%10713 5)1~! is derived, based on the assumption that the D* decays purely via charm
quark decay. The semileptonic branching fractions are related by B;(A.*) =B,(D")

x 1A%/ T(DY) .

Inclusive weak decays of a hadron with a new
flavor are usually assumed to proceed through
the heavy quark, with the light quarks acting as
spectators.? The lifetimes of charm states D*
(cd), F* (cs), D° (c#), and A_,* (cud) are thereby
expected to be equal, and of order a few times
10"'* 5. Recent lifetime measurements®”® give
D* and F* values in qualitative accord with this,

but may indicate D° and A,* lifetimes that are
significantly shorter.>* The discrepancy sug-
gests that interactions involving light quarks in
the decaying hadron may play a role.” The sub-
ject of this Letter is the A * lifetime. We find
that the nonspectator transition cd - su of Fig.
1(a) is at least comparable to the spectator proc-
ess of Fig. 1(b), leading to a A, * lifetime that is
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FIG. 1. (a) The nonspectator and (b) the spectator
contributions to A, * decay. The black circle represents
the effective weak interactions [Eq. (1)].

shorter than the D™ lifetime by a factor 1.5 to 3.

Before specializing to the A,* case, we would
like to comment briefly on the D° and F* cases.
The D° and F* decay rates receive contributions
from nonspectator processes cit —~ sd and ¢S ~ud,
respectively. These contributions are small be-
cause of helicity suppression and are usually ne-
glected. However, it has been suggested® that the
emission of a single hard gluon by the initial
quarks (ciz — ciig — sdg) can allow the nonspectator
contribution to be very significant. This can oc-
cur for both D° and F*, but is larger in the D°
case because of different strong-enhancement
and mass factors.® Thus nonspectator interac-
tions can potentially explain the observed pattern
of charmed-meson lifetimes, although it is not
clear whether higher-order gluon corrections
will preserve the above mechanism. In the A, *
case there is no helicity suppression of the proc-
ess c¢d - su, and there seems to be no clear rea-
son for its neglect in previous inclusive calcula-
tions.

Nonspectator interactions have been considered
previously in the case of A and £ hyperon de-
cays,'® ™ where they were found to be an impor-
tant part of the explanation of the large nonlep-
tonic decay rate and the AI=% rule. Inthese cas-
es soft-pion techniques, or pole-dominance as-
sumptions, have been used to estimate the dia-
grams. The much larger phase space involved
in A,* decays makes this approach inappropriate
here. Nonspectator contributions were included
in the analysis of two-body and quasi two-body
decays of charmed baryons by Korner, Kramer,
and Willrodt.'* Arguing that the multihadron de-
cay channels are resonance dominated, they esti-
mated the nonleptonic A,* decay rate by summing
over all two-body channels. However, such an

exclusive calculation of the inclusive rate re-
quires detailed, untested assumptions about the
symmetry of couplings and about wave-function
overlaps.

Our approach is to calculate directly the non-
spectator contribution to the A,* rate in the free-
quark model, including short-distance enhance-
ment. We use a nonrelativistic approximation
for the quarks in the A,*. The nonspectator con-
tribution is proportional to the square of the mod-
ulus of the wave function for two quarks at the
origin, |9(0)|®=(y|6°F, - T,)|4), and we estimate
this from the £,*-A_.* mass difference. To obtain
the inclusive decay rate we integrate over the
phase space of the final-state quarks, on the as-
sumption that the A,* mass is large enough for
this to represent (in the usual parton-model fash-
ion) the sum of all hadronic final states.

We work with the conventional form of the effec-
tive weak-interaction Lagrangian®® which, for the
processes cd — su and ¢ —~ sud, etc., can be writ-
ten as

Lesi= G/, U *5(f . OF 45 .07), (1)

where U is the Kobayashi-Maskawa'? mixing ma-
trix, and the operators are 0*=[(@d)(sc)

+ (5d)Gic)], where (7Q) denotes a color singlet
V-A current, §°y,(1-v,)Q,. The coefficients f,
and f _ (both equal to unity in the absence of strong
interactions) are the usual short-distance en-
hancement factors'®

fo=lam2)/ amy?)]” ~2.09,
)
fo=(f.)%~0.69,

where y =12/(33 - 2F), with F the effective num-
ber of flavors.

The calculation of the nonspectator contribution
[Fig. 1(a)] is like a calculation of free-quark scat-
tering, cd —~ su (with the ¢ and d initially at rest),
except that we must correctly fold in the color,
spin, and spatial parts of the A,* wave function.
Because of the color antisymmetry of the wave
function, the operator 0* does not contribute,
since it is symmetric under interchange of color
indices between the ¢ and d quark field opera-
tors.'»1% (This is because the exchange of color
indices, followed by a Fierz rearrangement,
turns the first term of O* into the second, and
vice versa.) This is an important fact because
it means that the short-distance factor is f_%,
which gives a substantial enhancement (~4 in the
rate) to this contribution.

The spin-isospin wave function of the A, * has
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the #,d quarks in an /=0, and hence a J =0,

state. Consequently, the spin component of the

¢ quark is just that of the A,* itself. Also the
spin component of the d quark is opposite to that
of the spectator # quark. Hence the four spin
states of the incoming ¢,d quarks are each dis-
tinct and noninterfering, so that the spin projec- |

tion reduces to the usual sum-and-average pro-
cedure applied as if to free-quark scattering.
The spatial wave function enters in the follow-
ing way.'® To calculate the decay rate one evalu-
ates the usual expression for a g-q scattering
cross section, replacing the flux factor 1/|¥,
- %,| by |#(0)|2%. This calculation is straightfor-
ward and leads to

Togmrsu=F ZIOO2G /21| Ul 2 | U | A% (m, +1m0)?) (A% = 4 2 2) 2, 3)

where A%= (m,+m,)® —m 2 —m,2.

We can estimate |#(0)|® from the =,*-A,* mass
splitting using the mass formula of De Rijula,
Georgi, and Glashow (DGG)'” where this mass
difference is determined by the quantum chromo-
dynamics analog of the Fermi-Breit “hyperfine”
interaction. This gives (cf. Ref. 11)

[9(0)|2=(y|8°(F, = F,)|¥)

9 1 mpm
g * _myme + +
167 o, G, —m.) (T =AM

@)

Using quark masses from DGG (m,=m,= 336
MeV, m =540 MeV, and m,=1650 MeV) and us-
ing'® T,* -=A,* =170 MeV, with a,~0.58 {obtained
from

o (m.?) = 121/[(33 - 2F )In(m 2/A%)],

with a scale factor A =0.5 GeV and F =3 flavors},
we estimate

|9(0)] 5,2~ 4.3 1073/~ 7.4X 10°3 GeV®,  (5)

Using this estimate in Eq. (3), with quark mass-
es as above, and including the Cabibbo suppressed
process cd —~du, we obtain

Thonsp™ 21X 107 GeV =0.32x 10" 5%, (6)

The estimate of [(0)|? is the major source of un-
certainty. Apart from this, the result is fairly
independent of the light-quark masses (but scales
roughly as the square of the assumed charm-
quark mass).

The spectator contribution to the decay rate is
well known,"? but is quite sensitive to the u,d, s
quark mass effects in the phase space, as well
as depending on the fifth power of the c-quark
mass. To avoid these uncertainties, we fix the
spectator contribution in terms of the D™ life-
time. This implicitly includes all gluon correc-
tions to the free-quark decay for both semilep-
tonic and nonleptonic modes. We can then write

T(A*) =T el *) + Tygnsp(A,*)
=T(D*)+ Tponsp(A, 7). (7)

nonsp
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This assumes that the conventional dogma® 2
(charmed hadron decay =charmed quark decay)

is at least correct for the D* (where the only pos-
sible nonspectator interactions are Cabibbo sup-
pressed). Thus we obtain the lifetime relation

A= (DY)
T(.")= 1+ T 7@ )]
_ 7(D¥)
1+7@*)/(3x 1078 g)] -

Numerically this gives, in the range of possible
values of T(D*),

®)

7(D*) (s) T'ronsp/ T'spec = Tnomsp T(DY) (A ()
2x10"13 ; 0.6 1.2x10-13
4x10"18 1.3 1.8x10"13
6x10-13 1.9 2.1x10"1

The semileptonic branching fractions of A,* and
D* are related by the same factor:

wo__ BOY) fnTA")
i P o 75) Rl T Y

If B,(D*)=~(23+6)%, as suggested by Kirkby,*
then we expect B,(A,*)~[(8-14)+ 3]%, depending
on the D* lifetime.

We have not considered explicit gluon correc-
tions to the nonspectator process.!® There are
difficulties of principle involved: One must de-
cide a priori which of the virtual corrections
should be absorbed into the wave function and
which have already been included in the effective
Lagrangian, Eq. (1). Thus a proper calculation
of gluon radiative corrections would require a
better understanding of the bound-state problem
than we have at present. In any case one would
want to improve upon the nonrelativistic approx-
imation and the estimate of |(0)|? (which again
presupposes a better understanding of the bound-
state problem) before one tried to calculate radi-
ative corrections.
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The nonspectator interaction discussed in this
Letter may also be important for the decays of
baryons containing still heavier quarks (b,?), but
uncertainties in the wave functions and masses
make reliable estimates impossible at this stage.
We suspect, however, that this contribution may
be less significant for heavier quarks. If |(0)|?
varies slowly with heavy-quark mass Mgy, then
the nonspectator contribution scales as Mg?,
whereas I'g ..M o - Then the conventional spec-
tator description of heavy-baryon weak decays
may be a better approximation than it seems to
be for charmed baryons.
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