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Closed-form solution for the superspace connections of extended supergravity in
terms of supervielbeine are given for arbitrary values of N, and deSitter parameter e.
A reduction procedure from the Riemannian geometry is used to deduce the desired so-
lutions.

A superspace formulation of the supergravity
geometry hinges crucially on the construction of
a so-called "gauge complete" supervielbein and
superconnection. By this one means that a super-
vielbein and a superconnection are constructed
in terms of the supergravity multiplet so that the
superspace transformation laws for these are
consistent with the supergravity transformation
laws in the component form. This technique for
constructing the superspace "potentials" as well
as the first superspace formulation of the super-
gravity dynamics was developed by the authors"
shortly after the component-form formulation of
the N = 1 supergravity' was obtained. However,
the "gauge completion" process' is intricate since
it involves the construction of the superspace
quantities order by order in L9.

"' What one
would like are closed-form solutions for the
supervielbeine and superconnections so that the
iteration procedure in 0 and the satisfaction of
the integrability conditions to each order in 8 are
circumvented.

A considerable amount of new progress has
occurred in the superspace formulations of super-
gravity in the last three years. ' " Specifically,
analyses using the order-by-order integration in

19 technique have been extended to values of N 3
(Ref. 5) and closed-form solutions for the super-
vielbein and the superconnection have been given
for the case N= j.' In this Letter we present gen-
eral closed-form solutions for the superconnec-
tion in terms of the supervielbein for extended
supergravity for arbitrary ¹ Details of the anal-
ysis and other aspects of the superspace geome-
try of supergravity are presented elsewhere. "

We begin by displaying first the main results
obtained in this paper, i.e. , the formulas for the
superspace connections of supergravity in terms
of the supervielbeine. We shall assume for the
purpose of this analysis that a "gauge complete"
supervielbein V~"(z) is known. We denote the
superspace connections corresponding to the
tangent-space group O(3, 1) NO(N) by h „~ and

h;, A. Then the Lorentz tangent-space connection
is obtained from h „~=h„„„VA(-1)"', where
h „„isgivenby"

where 0 „, and 0 „„are determined in terms of
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the vielbein components VA"(z) as follows:

g ( ) V A[V r
( 1)A+z+Az V r J( 1)AzV z

The Yang-Mills connections h;, A are obtained from

abk ijA(z) = a aibjArj (4)

~(n
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Here aic» is given by

Equations (1)-(V) represent the closed-form solutions of the superspace connections of extended super-
gravity for arbitrary N in terms of the supervielbeine. Note that this construction does not calculate
the form of the gauge-complete vielbein but only the relation between connection and vielbein. It is the
separation of these two problems that simplifies the task of finding the indicated relations.

Equations (1)-(7) may be deduced by the device of starting in the larger Riemannian superspace
[with tangent group X=OSp(3, 1~ 4N)] where the relation between connection and vielbein is trivial to
obtain, and taking the limit k -O. We will see that this limit produces precisely the supergravity con-
nections. We begin, therefore, with a brief summary of some of the relevant formulas of Riemannian
superspace. We choose as the basic geometrical quantity the vielbein VA (z) and its inverse V„(z),
defined by V~ VA~= 6~~. These quantities transform under general coordinate transformations z
=z + g (z) and local tangent-space transformations generated by c„~(z). The general tangent-space
metric g» is diagonal with elements g „and kg„6,, Here k is an arbitrary parameter.

The supervielbein connection co»z may be defined through the covariant derivative of VA so that

VA, Z-VA, z —(-1) '" I'A ZVA +2VA'(z" )s ~jjNZ, (8

where Z""=-(-I)"~Z""are the X=OSp(3, 1~4N) generators and I „z is the global-space affinity. In
a convenient basis, the structure constants of X (Refs. 11, 13) take the form

jjjjpQ 1 (~jjpff) ji() Q ( I)
ji+s +Bs () jj () Q] ( I) 8+0+ ( I)jjji[M N] ] ( I)pQ(p q)

We note the appearance of q~ in Eq. (9) and hence the presence of terms -1/k.
So far we have dealt with a general superspace of 4+4K dimensions. We now restrict the discussion

to a Riemannian space which arises by assuming that the affinity I'A z is (graded) symmetric'4 and
that VA . z=0. Equation (8) then determines both the affinity and the connection in terms of the viel-
bein in the usual fashion, and we record the latter here:

+Aj)c 2[~Aj)c+( 1) IIACR + ( )
+

Ilj)CA]~

where ~~c=(u„sA Vc (-1) " and

g V A( 1)c(1+B)[VD, (1i)c(A+z) + A+z+ AZV D ]( 1)BzV z~

(10)

%'hile the Riemannian geometi'y is based on a
tangent-space group X=OSp(3, 1

~ 4N), supergrav-
ity exists in a non-Riemannian space with tangent
group H =O(3, 1) SO(N). Of course H is a sub-
group of X which suggests that it should be possi-
ble to extract the superspace connections of
supergravity from the above Riemannian ones.
We will show now that this is the case, and that
the supergravity connections arise from the A

-0 limit of Eqs. (10) and (11). In order to exhibit
the supergravity group H, it is necessary to

make a change of basis in the Lie algebra of X
and introduce generators X""=Z C»"". The
new basis is chosen so that X "and Y" generate
O(3, 1) and O(N) of H:

~mn Zmn 11'k(~&mn) Zckak.
cd

~'& = Zai'&uq
Oba ~

(12)

Note that the k factors of Eq. (12) are necessary
to cancel the 1/k in the structure constants of Eq.
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(9) for the Z~ basis so that X " and Y'" correct-
ly generate O(3, 1) SO(N) (whose structure con-
stants are indePendent of k). In the new basis,
Riemannian connections ~»z are given by
X~~~A= Z~~~A and the O(3, 1) @O(N) pieces are
then

+mnC mnC t

j. 1 1 abij C 4aibjC 4aibj C k ~

(13)

ab1
~ijC 4~aibjC k ~

(14)

From Eq. (11) one sees that the k dependence of
conc comes from the final g~c factor when C is
a Fermi index. Thus for h „~ the limit k -0 in
Eq. (14) produces precisely the results stated in
Eqs. (1) and (2). To verify that these formulas
correctly represent the Lorentz connections of
supergravity, recall that in the gauge-completing
arguments of Brink et al. ' h „z is constructed
order by order in 0 'by integrating the gauge
transfor mation equations

5h.„,(z) = e.„,(z)+(-I)""~',h.„,
+h „r$ (15)

subject to the boundary condition h „„(x,8 '= 0)
= &u„„„(x)where ~ „„(x)is the total connection
(Einstein plus torsion) of the component form of
supergravity. It is obvious that the h „~ con-
structed from Eq. (14) correctly obeys Eq. (15)
(since e „ctransforms like a connection). In
order to verify the t9 '=0 boundary condition,
one must substitute the gauge-complete vielbein
into Eqs. (1) and (2) and evaluate at 8"'=0. Such
vielbeine have been constructed in Ref. 5 for N
-3 and we find by explicit calculation that the
boundary condition h „„(x;8"= 0) = ~„„„(x)indeed
holds. Thus Eqs. (1) and (2) are correct expres-
sions for the supergravity Lorentz connections.
The gauge-complete vielbein for N ~ 4 has not
yet been constructed. It is easy to verify, how-
ever, for this case that gauge completion of the
vielbein must yield from Eqs. (1) and (2) the
boundary condition

h„„„(x,8"'= 0) = (u „„(x)+ a„„„(x),
where 6 „„is independent of derivatives. This

We now examine the k -0 limit of Eq. (13) and
show that the supergravity connections h „& and

h, ,-A are

hmnc ~mncl 0 0 t

is an acceptable boundary condition to choose and
so Eqs. (1) and (2) are valid expressions for the
Lorentz connections for arbitrary N."

For the Yang-Mills connection h;„A(z), the
boundary condition chosen by Brink et al. ' is
h;, „(x, 8 '=0) =eA„"(x) where A„"are the Yang-
Mills fields of O(N) and e is the deSitter param-
eter. Here the limit k -0 of Eq. (14) is more
subtle because of the factor 1/k there .However,
using the gauge-complete vielbeine of Ref. 5 for
N (3 one finds by explicit calculation that at 8"'
= 0 the possible 1/k singular term actually cancels
out [because of the Majorana trace in Eq. (14)]
and that the whole 0„» (z) is at most a "constant
of integration" and can be omitted. For N ~3,
the vielbeine of Ref. 5 then yieM by direct calcu-
lation the correct boundary condition for h, ,„(x,
8=0). For N~4, one may easily extend the re-
sults of Ref. 5 on gauge completing the vielbein
to show that a regular boundary condition of the
form

h, ,„(x, 8 '=0}=sA„"(x)+~„„(x)
always holds where b, ;;„(x) is independent of deri-
vatives, which represent valid boundary condi-
tions for gauge completing the connection h, &&(z).

This completes the verification that Eqs. (1)-(V)
correctly represent the relation between connec-
tions and vielbeine in supergravity.

Concluding xemm"ks. —It is perhaps not surpris-
ing that the limit k -0 of the Riemannian connec-
tions leads to the supergravity connections. Thus,
as shown in Ref. 1, the full dynamics of N = 1
supergravity arises in this limit from the Rie-
mannian gauge supersymmetry theory. What is
remarkable is that the device of starting from the
Riemannian geometry and contracting down leads
to the relatively simple formulas Eqs. (1)-(V)
for the supergravity connections. In Ref. 10 a
full discussion is given as to how all the super-
gravity geometrical objects are embedded in the
larger Riemannian geometry. Further dynamical
relations of gauge supersymmetry also show that
under spontaneous breaking, the Riemannian
geometry of gauge supersymmetry reduces, in
the limit k -0, to a vacuum state whose global
space invariance becomes OSp(N ~ 4}„„andtan-
gent-space invariance is reduced from X
=OSp(3, 1~ 4N) to H =O(3, 1) O(N). Thus under
spontaneous breaking, gauge supersymmetry in
the limit k -0 has the same vacuum-state sym-
metry and tangent-space invariance as super-
gravity does.

A serious drawback of supergravity lies in the
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fact it is not a unified gauge theory. This is be-
cause its tangent group is a product group H
=O(3, 1) SO(N). In ana, logy to the framework of
grand unified theories, supergravity resembles
the nonunified theory of SU(3)"'NSU(2) SU(l) rath-
er than unified theory such as SU(5) or O(10). In
usual gauge theories, a product invariance group
is the symptom that a spontaneous breaking has
already occurred. As mentioned above, the
vacuum state and tangent symmetry of super-
gravity can indeed be thought of as arising from
the spontaneous breaking of the truly unified Rie-
mannian space with tangent group X =OSp(3, 1 ~4N).
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It is found that nonspectator interactions between c and d quarks in the Ac gjve a
substantial enhancement of its decay rate The life. time relation r(A, +)/r(D ) ~ [1+v(i&+)/
(sx10 s)] is derived, based on the assumption that the D+ decays purely via charm
quark decay. The semileptonic branching fractions are related by B&(A, +) ~B&(D+)
x q.(A,+)/7(D ).

Inclusive weak decays of a hadron with a new
flavor are usually assumed to proceed through
the heavy quark, with the light quarks acting as
spectators. " The lifetimes of charm states D'
(cif), F' (cs), D' (cu), and A, ' (cud) are thereby
expected to be equal, and of order a few times
10 "s. Recent lifetime measurements' ' give
D' and E' values in qualitative accord with this,

but may indicate D' and A, ' lifetimes that are
significantly shorter. ' The discrepancy sug-
gests that interactions involving light quarks in
the decaying hadron may play a role. ' The sub-
ject of this Letter is the A, ' lifetime. We find
that the nonspectator transition cd- su of Fig.
1(a) is at least comparable to the spectator proc-
ess of Fig. 1(b), leading to a A, ' lifetime that is
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