Primordial Synthesis of Anomalous Nuclei

Duane A. Dicus

Center for Particle Theory, University of Texas, Austin, Texas 78712

and

Vigdor L. Teplitz^(a)

Strategic Affairs Division, U. S. Arms Control & Disarmament Agency, Washington, D. C. 20451

(Received 11 September 1979)

We calculate the abundances of anomalous light, Z > 1 nuclei that would be produced by primordial nucleosynthesis if there exist new neutral, stable baryons.

Recently Dover, Gaisser, and Steigman¹ and Wolfram¹ considered astrophysical consequences of a new neutral, stable baryon, H^0 . H^0 and \overline{H}^0 , which occur in certain models,² would be present $(H^0/p \simeq 10^{-11}$, roughly independent of the H^0 mass³) at the time of cosmic nucleosynthesis and would be incorporated into nuclei. Middleton *et al.*⁴ subsequently set a limit of 10⁻¹⁶ on the terrestrial abundance of anomalous isotopes of oxygen. The purpose of this note is to estimate abundances of anomalous isotopes within the standard model of big-bang nucleosynthesis⁵; we use for reactions of anomalous nuclei analogous reactions of normal nuclei.⁶ We assume that the $N-H^0$ force is similar to the $N-\Lambda$ force and that the pattern of stable H^0 nuclei and their reactions is the same as that of Λ hyperfragments.⁷ H^0 will occur in the 1s shell; and, because it has I=0, it does not feel the one-pion-exchange potential. Stable H^0 nuclei binding energies could be calculated (up to certain unknown parameters) using the methods of Dover and Kahana.⁸ Such calculations would be

TABLE I. Reactions used for, and results obtained from, numerical calculations. The calculations for ⁶He^{*} are described in detail [(1)-(4)]; the other calculations are similar. We have for each H⁰ nucleus investigated other chains of reactions that could determine its abundance; on the basis of the rates of Ref. 11 the reactions used here are the most important. For example, neutron-induced reactions are seldom important because the neutron abundance falls exponentially with decreasing T_9 .⁵ Usually this more than compensates for the fact that the rate does not have the exponential barrier of (2).

Element ^A z*	Production Reaction	Analogue Production Reaction(s)	Depletion Reaction(s)	Analogue Depletion Reaction(s)	Az* 5 _{He} *	$\frac{A_{z}^{*}}{All_{z}} \times 10^{10}$
6 _{He} *	⁵ He*(n, y) ⁶ He*	⁶ Li(n,Y) ⁷ Li	(a) ⁶ He*(p,d) ⁵ He*	⁷ Li(p, ⁴ He) ⁴ He	-	_
			(b) He*(p,γ) Li*	⁶ Li(p, γ) ⁷ Be	0.04	0.04
7_{Li*}	⁵ He*(d, y) ⁷ Li*	⁴ He(d, y) ⁶ Li	⁷ Li*(p, ³ He) ⁵ He*	⁶ _{Li(p,³не)} ⁴ не	10-11	3×10^{-4}
⁸ Li*	⁵ He*(³ H, y) ⁸ Li*	⁴ He(³ H,γ) ⁷ Li	⁸ Li*(p, ⁴ He) ⁵ He*	⁷ Li(р, ⁴ не) ⁴ не	10-10	3×10^{-3}
9 _{Be} *	${}^{5}_{\rm He}$ *(${}^{4}_{\rm He}$, γ) ${}^{9}_{\rm Be}$ *	Average of ⁴ He(d,Y) ⁶ Li	⁹ Be*(d, ⁴ He) ⁷ Li* ⁹ Be*(p,) ¹⁰ B*	${^{7}\text{Li}(d,n)2}^{4}\text{He}$ ${^{6}\text{Li}(p,\gamma)}^{7}\text{Be}$	10-6	3 × 10 ⁴
		6 Li (4 He, γ) 10 B 12 C (4 He, γ) 16 O 16 O (4 He, γ) 20 Ne				
11 _{B*}	⁹ Be*(d, y) ¹¹ B*	Same as for ⁹ Be*	^{ll} B*(d, ⁸ Be) ⁵ He* ^{ll} B*(d, ⁴ He) ⁹ Be*	$7_{Li(d,n)2}^{4}$ He	10-13	6×10^{-5}
7_{Li*}	$9_{Be*(d, 4_{He})}7_{Li*}$	7Li(d,n)2 ⁴ He	⁷ Li*(p, ³ He) ⁵ He*	⁶ Li(р, ³ не) ⁴ не	10-15	3 × 10 ⁻⁸
⁸ Li*	⁹ Be*(³ H, ⁴ He) ⁸ Li*	⁷ Li(³ H,2n)2 ⁴ He	⁸ Li*(p, ⁴ He) ⁵ He*	⁷ Li(p, ⁴ He) ⁴ He	10-13	3×10^{-6}

a step toward more precise anomalous cross sections; here, however, we assume that anomalous rates are similar, when corrected for barrier effects, to rates for analogous normal reactions. We note that a more detailed calculation is planned by others.⁹

Production of ⁵He* and lighter nuclei.—Just as almost all neutrons end up in ⁴He so will most $H^{0^{\circ}}$ s end up in ⁵He*. Following Dover, Gaisser, and Steigman,¹ we will assume $H^{0}/p \simeq 10^{-11}$ so that ⁵He*/⁴He $\simeq 10^{-10}$. We expect approximately the same 10^{-10} value for ³H*/²H, ⁴H*/³H, and ⁴He*/³He as for ⁵He*/⁴He. We expect the ratio ⁵He*/⁴He to be roughly constant with time¹⁰ since the H^{0} absorption reactions leading to ⁵He* should have rates similar to *n*-absorption reactions leading to ⁴He and, as shown by our calculations, most ⁵He* once formed interacts no further while the ⁴He abundance is, of course, constant for T_9 <0.8 in the standard model.

⁶He* production.—In "normal" nucleosynthesis the absence of a stable, mass-5 isotope suppresses heavy-element formation, since Li production then requires d or ³H reactions, instead of a proton reaction, and these rates are suppressed by the small factors d/p and ³H/p. For anomalous nuclei the "gap" would occur at mass 6 but the existence of a stable, mass-6 hyperfragment, ⁶AHe, indicates the gap is filled by ⁶He*. (The binding energy of ⁶AHe indicates that ⁶He* is stable against β decay as well as strong decays.⁷) The reactions used to produce and to deplete ⁶He* are given in the first row of Table I. In terms of these reactions the mass abundance of ⁶He* (Y_{6He}*) is given by^{5, 11}

$$\frac{dY_{^{6}\text{He}*}}{dt} = Y_{^{5}\text{He}*}Y_{n}[v\sigma]_{^{5}\text{He}*(n,\gamma)^{6}\text{He}*} - Y_{^{6}\text{He}*}Y_{p}([v\sigma]_{^{6}\text{He}*(p,d)^{5}\text{He}*} + [v\sigma]_{^{6}\text{He}*(p,\gamma)^{7}\text{Li}*}),$$
(1)

where $[v\sigma]_{1(2,3)4}$ is related to the transition rate for nucleus 1 (to interact with 2) by^{5,11} $1/\tau = [v\sigma]_{1(2,3)4}X_2/A_2$. The coefficients $[v\sigma]$ are tabulated by Fowler, Caughlan, and Zimmerman¹¹; they are of the form

$$[v\sigma] = KhT_{9}^{3-2/3} \exp(-c/T_{9}^{1/3}),$$
(2)

where T_9 is the temperature of the universe in units of 10^9 K and hT_9^3 is the baryon (mass) density; c is a known coefficient determined by a WKB calculation of tunneling through the Coulomb barrier.¹² If Z_1 and Z_2 are the charges of nuclei 1 and 2 and A is the effective (reduced mass) atomic number, $A = A_1 A_2 / (A_1 + A_2)$, then c equals $(Z_1^2 Z_2^2 A)^{1/3}$. K is determined from measured cross sections¹¹ and contains a factor¹²

$$\left(\frac{Z_1Z_2}{A}\right)^{1/3} \exp\left\{1.05\left[Z_1Z_2A(R_1+R_2)\right]^{1/2} - \frac{17.15\delta_{I,1}}{\left[Z_1Z_2A(R_1+R_2)\right]^{1/2}}\right\},\tag{3}$$

where the factors in the exponent are the energy-independent parts of the Coulomb and angular momentum barriers. R_1 and R_2 are the radii of the two nuclei. We estimate the coefficients K by choosing analog reactions whose initial nuclei have properties similar (e.g., the same isospin values) to the nuclei under consideration and then correcting the K values with use of (3). The analog reactions are also listed in Table I. Let K and c for the production (depletion) reaction have values K_2 and c_2 (K_1 and c_1). Then, using $t = 200/T_9^2$, we solve (1) for the quantity $F_{6He*} = {}^{6}He*/{}^{5}He*$, obtaining

$$F_{6_{\text{He}}*}(T_{9}) = 1200hK_{2}c_{2}\int_{\exp(-c_{2}/T_{9}^{1/3})}^{\exp(-c_{2}/T_{9}^{1/3})}\frac{dy}{\ln^{2}y}Y_{n}(y)\exp\left\{-1200hK_{1}c_{1}\int_{\exp(-c_{1}/T_{9}^{1/3})}^{yc_{1}/c_{2}}\frac{dz}{\ln^{2}z}Y_{p}(z)\right\},$$
(4)

where we take the normal abundances, Y, from Wagoner⁵ and T_0 is the largest value of T_9 for which ⁶He* is zero. We evaluate (4) numerically. If the strong interaction ⁶He*(p,d)⁵He* is excoergic, as indicated by the corresponding hyperfragments, then it will dominate and no significant amount of ⁶He* will build up. Our mathematical results in this case can be fit, for $T_9 < 0.8$, by $5.6 \times 10^{38} \exp(-88.6/T_9^{1/3})$. If, on the other hand, the strong reaction is not present, then a signifi-

cant amount of ⁶He* would exist, changing considerably our conclusions regarding Li* abundance. We list as case (b), in row 1 of the Table, the case that ⁶He*(p,d)⁵He* does not go.

⁷Li* production.—The reactions and the result are shown in the second row of Table I. We take the total abundance of Li from Reeves.¹³ The sixth row of Table I shows that the relatively large amount of ⁹Be* (see below) does not significantly add to the amount of ⁷Li*. All this assumes case (a) of row one; no ⁶He* production. If, contrary to the indications from hyperfragments, ⁶He* is plentiful, case (b) of row one, then a large amount of ⁷Li* is produced through ⁶He* $(p,\gamma)^7$ Li*. We find a final abundance in this case of ⁷Li*/⁵He* $\simeq 6 \times 10^{-6}$ or a ratio of ⁷Li* to all Li of 2×10^{-8} . In this case Li would be a good element to search for H^0 , but still not as good as Be.

⁸Li* production.—This is shown in rows 3 and 7 of Table I. Unlike ⁷Li* the amount of ⁸Li* would not be radically changed by the presence of ⁶He* since deuterium would be required to produce it via ⁶He*(d, γ)⁸Li*.

⁹Be* production.—⁸Be is unstable leaving the normal elements with a second mass gap at 8. ⁸ABe is stable, however, and prevents a mass gap in anomalous nuclei at 9. Furthermore, the strong reaction which depletes ⁹Be* requires the use of deuterium [⁹Be*(p, ³He)⁷Li* is endoergic] and is thus suppressed. The observed abundance¹³ of Be is about 10^{-10.7} and thus ⁹Be*/⁵He* is enhanced by a factor of ~3×10⁴ over ⁹Be/⁴He. This would appear to make Be the best light element to check for H⁰ and \overline{H}^{0} .

Boron production.—Hyperfragment Λ -binding energies⁷ imply that ¹⁰B*, which is stable under strong interactions, should β decay to ¹⁰Be*. This means the first possibility for a stable boron isotope is ¹¹B*. It may be that this one also β decays; we have found no binding energy data on ¹¹C and ¹¹ABe with which to decide. Assuming ¹¹B* is stable, we have calculated its abundance as shown in the fifth row of Table I; ¹¹B*/⁵He* is small.

Variation of parameters.---It is difficult to quantify the uncertainty introduced into the numerical results by the range of choices for an analogue reaction or by deviation of the true reaction rate from any analog-deduced value. An illustrative, extreme example is that of ${}^{5}\text{He}*({}^{4}\text{He},\gamma){}^{9}\text{Be}*$ for which no analog can have similar doubly magic A values. For K, from (3), one obtains from the analog reactions of Table I, $K = 2 \times 10^4$, (3.5-1) $\times 10^{5}$, (2-300) $\times 10^{4}$, and 6×10^{3} for ⁴He, ⁶Li, ¹²C, and ¹⁶O, respectively; the ranges for ⁶Li and ¹²C correspond to extra variation¹¹ in the rates beyond (2) over the temperature range $T_9 = 0.85$ to T_9 =0.0. We used, for this case, $K = 7 \times 10^4$; the final value for ${}^{9}Be*$ scales roughly linearly with K. In other cases where we made choices between different analog reactions, we chose the one which maximized the Li* abundance and minimized the Be* abundance. The calculations above

were performed with $m_{H^0} = m_n$. The value of m_{H^0} enters the calculation only through the mass number A which enters the reaction rate only through c in (2) and through K from (3). The effect of changing A tends to cancel between the temperature-dependent term in (2) and the temperatureindependent terms in (3). We have checked numerically that as m_{H^0} varies from 0 to ∞ the ⁹Be* and Li* abundances vary by less than a factor of 2. We have, in the calculations above, assumed the baryon density factor h to be 10^{-5} . The maximum h allowed by the deuterium abundance is 3 $\times 10^{-5}$. Varying *h*, in the calculation of ⁹Be*, from this upper limit down to 10^{-6} indicates that the anomalous abundance is almost directly proportional to h. Thus, ${}^{9}\text{Be}^{*/5}\text{He}^{*}$ could be increased by a factor of 3 or decreased by as much as 10. The other anomalous abundances should change in much the same way. The K values are sensitive to the radii in (3). We have taken normal radii from Preston¹⁴ and assumed the radius of each anomalous nucleus, ${}^{A}Z^{*}$, is equal to the radius of the normal nucleus, ${}^{A-1}Z$. We estimate that changing the radii of the anomalous particles by 20% will not change the abundances by more than a factor of 3. In view of these uncertainties, and the larger uncertainty in the abundances of the normal nuclei,¹³ a reasonable error to assign to the values in the final column of Table I would seem to us to be a factor of 10 in each direction.

Given an H^0 abundance $H^0/p = 10^{-11}$ at the time of cosmic nucleosynthesis primordial He*/He (all primordial He* isotopes/ all He) should be 10^{-10} while Li*/Li and B*/B should be much less —probably $3 \times 10^{-13\pm1}$ and $6 \times 10^{-15\pm1}$, respectively. Primordial Be*/Be is considerably larger, $3 \times 10^{-6\pm1}$. Uncertainties from our choice of single dominant reactions over retention of the complete network and from our use of analogous reactions to establish rates could, perhaps, change these results beyond the normal $10^{\pm1}$ quoted but would be unlikely to reverse the factor of 10^7 by which Be is favored over Li or B. We therefore recommend that further searches for H⁰'s be directed to beryllium.

We have benefitted from conversations and correspondence with J. Broderick, J. B. Cammarata, C. Dover, A. Gleeson, T. Griffy, E. Kolb, R. Middleton, L. Sartori, and G. Steigman. One of us (V.L.T.) is grateful to J. Sucher for the hospitality of the University of Maryland Center for Theoretical Physics. This work was supported in part by the Department of Energy and by the National Science Foundation. ^(a)Permanent address after June 30, 1980: Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061.

¹C. B. Dover, T. K. Gaisser, and G. Steigman, Phys. Rev. Lett. <u>42</u>, 1117 (1979); S. Wolfram, Phys. Lett. <u>82B</u>, 65 (1979).

 2 See, for example, F. Wilczek and A. Zee, Phys. Rev. D <u>16</u>, 860 (1977), and reference cited therein and in Ref. 1.

³We use particle symbols for particle number densities and denote nuclei containing an H^0 or H^0 by ${}^{A}Z^*$, where A is the total baryon number and Z is the atomic symbol.

⁴R. Middleton, R. W. Zurmühle, J. Klein, and R. V. Kollarits, Phys. Rev. Lett. <u>43</u>, 429 (1979).

⁵P. J. E. Peebles, Astrophys. J. <u>146</u>, 542 (1966); R. Wagoner, W. Fowler, and F. Hoyle, Astrophys. J. <u>148</u>, 3 (1967); and R. Wagoner, Astrophys. J. <u>179</u>, 343 (1973). For a review of these calculations, see D. N. Schramm and R. Wagoner, Ann. Rev. Nucl. Sci. <u>27</u>, 37 (1977).

⁶See J. J. Broderick *et al.*, Phys. Rev. D <u>19</u>, 1046 (1979), for a related use of this method.

⁷M. Juric et al., Nucl. Phys. B <u>52</u>, 1 (1973); B. Povh,

Annu. Rev. Nucl. Sci. 28, 1 (1978).

⁸C. B. Dover and S. H. Kahana, Phys. Rev. Lett. <u>39</u>, 1506 (1977).

 9 E. W. Kolb and G. Steigman have informed us of a calculation in progress by C. Dover, W. Fowler, E. Kolb, and G. Steigman.

¹⁰Dr. Kolb has informed us of an interesting analogous result from the calculation of Ref. 9: If the mass gap in normal nuclei at A = 5 is "artificially closed" the full network of nuclear reactions of Ref. 5 then leads to a "⁵He"/⁴He ratio that varies by less than a factor of 2 over the time of nucleosynthesis.

 11 W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, Ann. Rev. Astron. Astrophys. <u>5</u>, 525 (1967), and <u>13</u>, 69 (1975). Because of the relatively low temperature of nucleosynthesis, the nonresonant contributions to all reactions used in this paper dominate resonant contributions, where the latter are known.

¹²D. D. Clayton, *Principles of Stellar Evolution and Nucleosynthesis* (McGraw Hill, New York, 1968). ¹³H. Reeves, Ann. Rev. Astron. Astrophys. <u>12</u>, 437 (1974).

¹⁴M. A. Preston, *Physics of the Nucleus* (Addison-Wesley, Reading, Mass., 1962).

ERRATUM

ANOMALOUS CONDUCTION-ELECTRON PO-LARIZATION IN SUPERCONDUCTING YRh_4B_4 . P. K. Tse, A. T. Aldred, and F. Y. Fradin [Phys. Rev. Lett. 43, 1825 (1979)].

On page 1826, second column, the third line is a repeat of the second line, second column on page 1825 of our paper. Instead, the line on page 1826 should read "transition in the magnetically doped alloys. There"