
VOLUME 44, NUMBER 3 PHYSICAL REVIEW LETTERS 21 JANUARY 1980

Magnetic Susceptibility of a Simple Charge-Density-Wave Metal
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The total magnetic susceptibility of the conduction electrons is calculated for a simple
metal containing a charge-density wave. A large (-18') anisotropy in the susceptibili-
ty is predicted for the charge-density wave model of potassium. In this case, the sus-
ceptibility is most paramagnetic when the magnetic field and charge-density wave vec-
tor, Q, are parallel. The possibility of producing single-Q samples by cooling in a
magnetic field is discussed.

The purpose of this paper is to calculate the
magnetic susceptibility of the conduction elec-
trons in a simple metal containing a charge-den-
sity wave (CDW). In particular, the "simple met-
al" chosen for discussion is the CDW model of
potassium. The experimental evidence support-
ing the existence of a CD% ground state in potas-
sium has recently been reviewed by Overhauser. '
The effects of electron-electron interactions are
not included in this work.

As shown below, if potassium contains a CD%,
the conduction-electron susceptibility has a large
(-18%) anisotropy. The susceptibility is most
paramagnetic when the magnetic field H is paral-
lel to the CDW vector Q. The anisotropic part of
the susceptibility depends on the square of the
sine of the angle between H and Q. Experimental
consequences of this anisotropy will be discussed
below.

Only the bare essentials of the CDW model of
potassium needed for the calculation are included
here. Additional detail can be found in the review
by Overhauser' and references therein. In the
presence of a CDW, each electron experiences a
sinusoidal potential

V=G cosQ r, (1)

where G is the CDW energy gap and Q is the CDW

vector. Thus, a metal which is isotropic (cubic)
in the absence of the CDW acquires an anisotropy
characterized by the direction of Q. The assump-
tion that the CDW ground state of potassium is
described by a single plane-wave component (in
contrast to the transition metal dichalcogenides,
for example, which exhibit CDW phases described
by three Q's) follows from experiment. Bishop
and Overhauser' have shown that the twofold an-
isotropy of the residual resistivity of potassium
deduced from the induced-torque measurements
of Holroyd and Datars' demonstrates the uniaxial

nature of the CDW distortion.
The CDW potential perturbs the one-electron

wave functions and energies (which are taken as
those of free electrons in the absence of the
CDW), causes energy gaps at k=+ Q/2, and leads
to a modified Fermi surface. For this paper the
Fermi surface is taken to be that which touches
the energy gaps at a point, i.e. , the case of criti-
cal contact. ' A simple and often useful feature
of this model is that integrations over d'k can be
replaced by the equivalent expression

d'k = (rnlk )dE d4'dk, ,

where E is the electron energy and the choice of
cylindrical coordinates with s parallel to Q has
been made.

Use of (2) makes calculation of the Pauli sus-
ceptibility trivial with the result

where g is the number of electrons per unit vol-
ume, and k, and cF are the radius and energy of
the unperturbed Fermi sphere, respectively.
is the free-electron Pauli susceptibility. The
factor Q(2k„reflects the higher density of states
at the Fermi surface when a CDW is present.

The theory of the diamagnetic susceptibility of
conduction electrons has been studied extensive-
ly. It is convenient to use the results of Misra
and Roth' for the diamagnetic susceptibility. They
treat the case of nearly free electrons and, spe-
cifically, consider the case when electrons are
near the energy gaps. References to additional
work on the subject may be found in the Misra
and Roth paper.

A useful starting point for calculating the orbit-
al contribution to the susceptibility is Eq. (6.6) of
Misra and Both modified for the present notation. '
For simplicity, choose coordinate axes such that
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H =Ha cos0+Hx sin8 and Q=Qz. Then

„.,="",
)

d'kf (E)

[(Q'+2k Q)'+g']"' 6 [(Q'+2k. Q)'+g'j"'

—"d' G2 8k,'
v* ((Q*+2a Q)*+ *F ((Q*+2a Q)* *i"* I

f (F) is the Fermi occupation factor, f'(E)= df (E—)/dE, and g=2mG/O'. A factor of 2 has been included
to account for the two energy gaps.

It is convenient to label the five terms on tne right-hand side of Eq. (4) as X, through X,. 1,st (Y =FF(G/
O'Q'. The result to order o(' is

1 Q 1 Q 1, . 2 1 Q(f iF iF 1
3xo 2

1-2n' sin 9, X' X4 2 X&& 2k II 1-4-4(Y 2(F sin'&,
2kF

' 3 2kF kF) i

X =2 ~ 2k 3-2' 3-2 + ' 6" '8
(5)

X, is the usual result for the I andau diamagnet-
ism of free electrons modified by the factor Q/
2A F which represents the increased density of
states at the Fermi surface (as above for the
Pauli susceptibility). Note that the "anisotropy"
terms, X, through y„are independent of the CDW

energy gap G to lowest order although the value
of the leading term depends on the geometry of
the Fermi surface near the gaps. The depen-
dence of the leading term in y, through y, on Fer-
mi-surface geometry near the gaps is not too
strong for the large CDW energy gape [G = 0.6 eV
(Ref. 1)j of interest here. The values above were
calculated for a Fermi surface in critical contact
with the energy gaps but are essentially unchanged
if the Fermi surface misses the energy gaps only
slightly (on a scale set by G) or contacts the en-
ergy gaps in small necks.

Although there would be no way to turn off the
CDW at zero temperature it is interesting to ex-
amine the limit of the orbital susceptibility as G- 0. That the leading terms in y, through y, are
explicitly independent of G means that this must
be done with care. It is possible to show for a
Fermi surface which does not contact the energy
gaps that the coefficient of the e' term vanishes
as G - 0 since the number of strongly perturbed
states shrinks to zero rapidly enough. Moreover,
for a Fermi surface which contacts the energy
gaps with finite area, states above the gap will be
occupied as G —0 (since the unperturbed Fermi
surface is spherical); and the o. ' term goes to
zero because of a cancellation of states above and
below the gap. For the case of critical contact,
the o. ' term does not vanish as G —0. Although

! the number of strongly perturbed states decreas-
es as G -0, the contribution to y from each state
grows in inverse proportion. That critical con-
tact gives an unphysical result in this case is not
surprising since the Fermi surface near the gaps
is changed from a smooth, curved surface to a
cone for any G &0. Of course, as stated above,
this is not a problem for the large G of interest
here.

The value of G proposed for potassium is G
= 0.6 eV. ' With use of this value the total sus-
ceptibility is

X=&X, 2
!-(0.11)x.

2F) F

If y„ is the solid-angle average of y and the
anisotropy is defined as

(Xmax Xmin)/Xavg t

(6)

then g=0. 185. For G =0.6 eV and critical con-
tact, Q/2kF —= 1.06.

The relatively large effect calculated here is
atypical of the size of band-structure effects on
the susceptibilities of simple metals. Typically,
band structure produces a ™(2 to 5)%%u(( change in
the diamagnetic susceptibility from its free-elec-
tron value. ' This occurs in monovalent metals
because the Fermi surface is not too close to the
energy gaps. In polyvalent metals cancellations
occur for electrons below and above the gaps.
Moreover, the effect described here is anisotrop-
ic in contrast with the isotropic effects of the
crystal potential in cubic metals.

The large anisotropy in the susceptibility gives
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rise to a number of interesting experimental pos-
sibilities. Before discussing the most important
of these it is necessary to review the concept of
Q domains. In a (single crystal) sample Q will
point along a specific crystallographic direction.
Because there are a number of equivalent direc-
tions, ' it is possible to have a domain structure
with Q pointing in different (equivalent) directions
in different parts of the (single) crystal. Stress
is thought to be very important in determining
this preferred local direction of Q. ' A "well-
characterized" sample is one with a single Q
domain throughout. Multiple-Q-domain samples
would lead to sample-dependent results in many
types of experiments. '

If a single-Q sample of potassium can be ob-
tained, then a measurement of the total suscepti-
bility as a function of sample orientation will of-
fer evidence of the presence of a CD%. Obtaining
a single-Q sample is not an easy task. Such a
sample was grown by .Holroyd and Datars inside
a spherical Eel-F mold. "This sample exhibit-
ed a giant anisotropy in induced-torque experi-
ments. ' Bishop and Overhauser have discussed
this point in more detail. '

It was mentioned above that stress appears to
play an important role in Q-domain orientation.
Because of the susceptibility anisotropy discussed
here, an applied magnetic field should also in-
fluence Q-domain orientation. ' Suppose that a
molten sample of potassium is cooled in a mag-
netic field. Since y is most paramagnetic when

Q is parallel to H, the (possible, crystallograph-
ic) direction of Q which is most nearly parallel
to H will be preferred as the sample crystallizes.
Since there is no quantitative theory of the stress
effects involved in orienting Q, it is not possible
at this time to estimate the size of the magnetic

field necessary to produce a single-Q sample.
If such a technique should prove successful, sin-
gle-Q samples could effectively be "mass pro-
duced" and subjected to. a variety of experimental
techniques such as the de Haas-van Alphen ef-
fect, induced-torque measurements, helicon
resonance, etc. Indeed, an interesting possibil-
ity would be to measure the susceptibility of a
field-cooled sample. A simple method for Q-
domain control would, as emphasized by Over-
hauser, ' be the bane of sample dependence and
irreproducibility which has marked the history of
research on potassium.
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