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We present a linear-response formulation of Knight shifts in metals based on the
density-functional theory. The approach emphasizes the importance of achieving self-
consistency with respect to both the charge and spin densities and includes core polar-
ization. An application to simple metals indicates that, in this case, the Knight shifi
is essentially a local property, independent of structure. Satisfactory agreement with

experiment is achieved.

Knight-shift measurements in metals and alloys
are of interest because they provide a delicate
probe of both the electronic and magnetic proper-
ties in the vicinity of the resonant nucleus. In
spite of the extensive theoretical work done in
this field,'™® it can still be said that a description
of the Knight shift which consistently incorporates
all effects that have been considered important
(such as self-consistency and core polarization)
is still lacking. It is the purpose of this Letter to
propose a new method of dealing with the problem
from a fundamental point of view with use of the
density-functional theory.*® To illustrate the
method we have performed Knight-shift calcula-
tions for several of the simple metals. The main
conclusion of our approach is that the Knight shift
for these metals can be accounted for without in-
voking the structural properties of the metal, but
with use of a model of an ion immersed in an elec-
tron gas.

The dominant contribution to the shift is usually
due to the Fermi contact interaction between the
nucleus and the electronic spins and is given by®

&1 m (0)

Ks=73 B, (1)

Here, B, is the externally applied magnetic field
and . (0) is the electron-spin magnetic-moment
density at the position of the nucleus. In conven-
tional treatments of this quantity,® it is tacitly as-
sumed that electronic exchange interactions give
rise to a spatially homogeneous effective magnet-
ic field acting on the electronic spins. This im-
plies that the field does not alter the spatial char-
acter of the electronic band states but simply re-
distributes the occupation of these states at the
Fermi level. With this assumption, the Knight
shift is expressible as

Ky =2 X {00y, @)

in terms of the exchange-enhanced spin suscepti-

bility x, and a Fermi-surface average of the elec-
tron contact density. Most theoretical calcula-
tions®? are based on Eq. (2) with x, obtained ei-
ther experimentally or from an independent theo-
retical estimate.

Although this approach has developed to an ad-
vanced level with, for example, the use of non-
local pseudopotentials,® it does not consider sev-
eral important effects. One of these is the ex-
change core polarization® which can be viewed as
a consequence of a spatially inhomogeneous ex-
change field in the core of the ion. In the case of
alkali metals, this effect has been estimated” to
be of the order of 20%, although the effect ap-
pears to have a different character within the
density-functional theory. Secondly, in a pseudo-
potential approach, the core states are taken
from a free-atom calculation and thus neglect the
importance of achieving self-consistency between
the core and valence states in a metallic environ-
ment. Finally, in the context of the Knight shift,
there is the additional requirement of achieving
self-consistency between the spin density and the
exchange field, a condition which is usually ig-
nored.

To avoid these various shortcomings, it is nec-
essary to revert to Eq. (1) and directly calculate
m (0). For a metal, »(0) can in principle be ob-
tained from a spin-polarized band-structure cal-
culation with use of density-functional theory.®
However, this direct approach is obviously diffi-
cult and, in fact, is unnecessary in those situa-
tions in which band-structure effects are of sec-
ondary importance. In this Letter we adopt an
alternative method which readily accounts for the
nonstructural aspects of the Knight shift in sim-
ple metals; our point of view is similar to that
taken in recent calculations of muon Knight
shifts.®° A detailed description of the method
and its applications will be the subject of a sep-
arate publication.

Our approach is a linear-response calculation

© 1980 The American Physical Society 175



VOLUME 44, NUMBER 3

PHYSICAL REVIEW LETTERS

21 JANUARY 1980

done within the framework of the density-function-
al formalism. As shown previously,® the mag-
netization induced by an external field B, is giv-
en quite generally by

m(@) = [ @®'x (T ,T)Bg(T), 3)

where x (¥, ') is the density response function for
the inhomogeneous electronic system and Beff(f-)
is the effective magnetic field acting on the spins,

Boof(T)=Bo+ [ d%' w o (F, ¥ )m @). @)

In addition to the external field, Eq. (4) contains
the exchange-correlation field which is defined in
terms of the exchange-correlation energy func-
tional, w, (F,7) =1{6%E \.[n,m]/6m F)om F')}, - o
Our work is based on the local density approxi-
mation in which w, (¥,7') is of the form w, [n(F)]
X 6(F -7/).*+12 On combining Egs. (3) and (4) one
obtains an integral equation for  (f) which auto-
matically builds in the self-consistency require-
ment.

1t is apparent from (3) that the central quantity
in our approach is the response function x(¥,7’).
For computational purposes it is convenient to
express x in terms of retarded single-particle
Green’s functions®®:

x (@, )

——20m 77 L6+ F, F, 0)6F, Fw),

(5)

where E; is the Fermi energy. The complexity
of the problem resides in the evaluation of G*.
However, a simplification suggests itself in the

1 FF dw < + +
xo(r,r')=—-2—1—rlmj TE(2Z+1)G’ o, v ,w)G,;* ' ,7,w).

=0

case of simple metals when considering the mag-
netic response within the Wigner-Seitz cell of a
particular ion. By developing the metal Green’s
function in a ¢-matrix series,*

G =G, " +G 1 Gt + 23 Gy t,Go +. ..,
1#0

only the first two terms are important for weak
scattering from the surrounding ions when the
spatial arguments T and I are restricted to the
Wigner-Seitz cell of interest. If the metal Green’s
function is approximated by the single-ion Green’s
function, G;* =G, +G,"1,G,", we are effectively
describing the propagation of an electron in the
presence of a single ion imbedded in an electron
gas having a density n, corresponding to the va-
lence electrons. This approximation defines (and,
of course, restricts) our model. To be consis-
tent with this picture, we imagine placing a host
ion at the center of a vacancy created in jellium
by removing the positive background within the
Wigner-Seitz radius R s = (Z,)"%,. Here Z, is
the valence charge of the ion and 7 is the elec-
tron-gas parameter, » = (3/4mn,)"/%. As a pre-
liminary step in the calculation we have therefore
obtained self-consistent ionic potentials using the
procedure of Manninen et al.”® Both core and va-
lence states are treated on an equal footing in
this calculation.

By use of the spherical-harmonic expansion,
Gi' @, T, w)=3.G, " r,7",w)Y, (7)Y *@#'), in Eq.
(5), the response to a spherically symmetric mag-
netic field, which is required in (3), is given in
terms of

(6)

TABLE 1. Calculated Knight shifts and related quantities for the Gunnarsson-Lundqvist (Ref. 12) and for the
von Barth—Hedin (Ref. 11) (values in brackets) exchange-correlation potentials. All experimental values are taken
from Ref. 16 except for Be and Mg which are quoted from Ref. 3.

Metal (r;) x5 (1078 cgs)  ([¥(0)|%)g, K, (Eq. 2) K (core) K(valence) K;(Eq. 1 K, (expt)
Li (3.28) 1.35 (1.18) 27.38 0.0309 (0.027) -0.0074 0.0348 0.0274 (0.0248) 0.026
Na (3.96) 1.25 (1.04) 152.6 0.160 (0.133) -0.006 0.137 0.131 (0.117) 0.116
K (4.86) 1.20 (0.95) 339.8 0.343 (0.270) -0.017 0.271 0.254 (0.219) 0.265
Rb (5.2) 1.20 (0.93) 742.1 0.742 (0.578) -0.030 0.541 0.511 (0.438) 0.662
Cs (5.64) 1.21 (0.91) 1068 1.05 (0.818) -0.097 0.891 0.794 (0.659) 1.44
Be (1.88) 1.84 (1.74) 24.88 0.0382 (0.0362)  -0.0085 0.0436 0.0351 (0.0340) 0.0
Mg (2.65) 1.48 (1.35) 125.3 0.155 (0.141) -0.006 0.143 0.137 (0.129) 0.110
Ca (3.27) 1.35 (1.17) 242.1 0.273 (0.238) -0.053 0.306 0.253 (0.223) -
Sr (3.56) 1.29 (1.11) 518.8 0.558 (0.481) -0.115 0.628 0.513 (0.444) -
Al (2.06) 1.73 (1.62) 109.6 0.158 (0.149) -0.008 0.152 0.144 (0.139) 0.164
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G, is obtained as the solution of an appropriate
differential equation. The integral in (6) over the
negative range of w leads to a sum of contribu-
tions from the occupied core states, while the in-
tegral from 0 to E; gives a continuum contribu-
tion. If the continuum part of y, is expressed as
Xo" +AX,, Where X" is obtained from the Lind-
hard function, only the few lowest /-values in (6)
need be evaluated explicitly to define Ay,. The
integral equation for m () obtained from (3) and
(4) is then solved by reducing it to a system of
linear equations.

The above program has been carried out for a
number of simple metals and the calculated
Knight shifts are summarized in Table I. We
present both the Knight shifts based on (1) with
m (0) obtained from the solution of (3) and the val-
ues based on the conventional expression (2). The
Fermi-surface contact density in the third col-
umn is obtained using the self-consistent ionic
potentials for the present model. These values
are similar to those obtained by Styles and Tran-
field® for the lighter elements, although signifi-
cant differences arise for the heavier elements.
For example, our value of {|(0)|»g, for Cs is
only 60% of their value. Since scattering effects
appear not to change the contact density in Cs,?
this discrepancy indicates the importance of
achieving self-consistency between the core and
valence states in obtaining accurate contact den-
sities, especially for the heavier elements. One
should therefore be cautious in accepting calcu-
lated contact densities simply on the basis of
agreement with experimental Knight-shift values.

The results based on (1) have been partitioned
into the core and valence contributions. The for-
mer is typically 10% of the latter, and of oppo-
site sign. Interestingly, even an increase in the
valence contributions (column 6) over that of col-
umn 4 is more than compensated by the negative
core contribution, so that a net reduction in the
Knight shift is achieved through core polariza-
tion. A similar result was observed for the mu-
on.® This effect is of opposite sign to that ob-
tained previously for the alkalis” although a di-
rect comparison may not be meaningful because
of the different formulations.

To explain the source of this core polarization
we show in Fig. 1 the core and valence magnetiza-
tion density and the corresponding effective field
defined in Eq. (4) for the representative example
of Li. The significant hole in the exchange field
in the ion core is due to the suppression of ex-
change effects by the high core-electron density.
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FIG. 1. 7 dependence of the core (dash-dotted curve),
valence (dashed curve), and total (solid curve) mag-
netization density for Li in units of the background
magnetization m,. Note change in scale at » = 0.5 a.u.
The inset shows the effective magnetic field in units of
the external magnetic field.

In terms of this general feature the core-polar-
ization effects can be given a simple interpreta-
tion. Since a uniform field would have no effect
on the spatial character of the core states, the
hole effectively acts as an inhomogenous magnet-
ic field in a direction opposite to that of the ap-
plied field and therefore leads to the negative
core polarization. However, its effect on the va-
lence states is not predictable; due to the non-
local character of the continuum part of the re-
sponse function x,(r,7’), a magnetic field local-
ized to the core region can either increase (Li,
Be) or decrease (Na,Mg) the valence-state con-
tribution. Within the present formulation it is
evident that the conventional expression for the
Knight shift (2) corresponds to neglecting the
core hole in the exchange field, with instead a
uniformly enhanced effective field.

A comparison of our calculated K values with
experiment'” shows an overall satisfactory agree-
ment except for Be, Rb, and Cs. The general
degree of agreement is similar to that achieved
by Styles and Tranfield® who used a pseudopoten-
tial formulation. The large discrepancy for Be
points to the importance of band-structure effects
in this metal as evidenced by the unusually small
density of states at the Fermi energy.'® In this
case multiple-scattering effects are clearly im-
portant and the use of a single-ion Green’s func-
tion is inadequate. The poor results obtained for
Rb and especially Cs suggest the importance in
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the heavier elements of relativistic effects which
we have ignored and which are known to be sig-
nificant in these metals.! Furthermore, one
would expect band-structure effects to be rela-
tively more important in the case of Cs. Finally,
as a general observation we note that the calcu-
lated Knight shift is very nearly a linear function
of the nuclear charge Z. To the extent that the
experimental values follow this trend it appears
that the Knight shift in simple metals is essen-
tially a local property characteristic of a single
ion screened by an electron gas.

In conclusion, we have demonstrated an effec-
tive method of calculating Knight shifts in simple
metals using a linear-response formulation of
density functional theory. It should be empha-
sized that the main virtue of this approach is that,
by treating core and valence states in the same
way, one can avoid the ambiguous choice of pa-
rameters that tends to plague the pseudopotential
approach. It also indicates the rather delicate
interplay of various important effects, such as
core polarization and achieving self-consistency
for both the charge and spin densities.
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Results of ab initio self-consistent linear muffin-tin orbital energy-band studies for
EuMogS;, GdMo,S;, SnMogS;, and SnMogSes including all electrons in all 15 atoms/unit
cell are reported. The large charge transfer from both the Eu, Gd, and Sn sites and
from the Mo sites to the chalcogens is shown to be the driving mechanism with which to
explain their unusual magnetic and superconducting properties.

The unusual magnetic and superconducting
properties of the ternary molydenum chalcogen-
ides have attracted a great amount of experimen-

tal and theoretical interest.® These Chevrel-
phase compounds, with general formula M, MogS,
(or Seg) and x between 1 and 4, occur for a large
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