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particular for the quadrupole-quadrupole form
considered here. It will generally have a mini-
mum for some value of P andy, for given e, tt,
and X. For X & 0, the minimum always occurs
at y = 0, while for y & 0 it occurs at y = n/3. When

X =0 the energy surface is independent of y, as
appropriate to a y-unstable rotor, and has a
minimum at P

-=I (P approaches unity for large
N). For the SU(3) limit, with s =0 and y = ——,'v7,
the minimum occurs at y=0, P = v 2 (P approach-
es v 2 for large N) ~ In the SU(5) limit, with Ii =0,
the energy surface is again independent of y,
with a minimum at P = 0, as appropriate to a vi-
brator. Thus the behavior of the energy surface
exactly parallels that derived from our collective
Hamiltonian above. '

In conclusion, we have shown that by means of
the intrinsic state given in (2) we can convert
the IBM Hamiltonian into a differential operator
in terms of the shape parameters P, y, and Euler
angles of an ellipsoid. The rotational degrees
of freedom are completely decoupled from the
intrinsic variables, and the moments of inertia
have mass parameters which depend on the shape

variables, but are similar to those given by
Bohr. ' However, the intrinsic Hamiltonian has
a complicated dependence on the shape param-
eters including coupling between the P and y
shape variables. In the small-P and -y limit
the Hamiltonian derived from the boson Hamil-
tonian reduces to the Bohr Hamiltonian. We have
also shown that the derived collective Hamilton-
ian has the correct behavior in each of the well-
known limiting cases of the IBM.
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The classical limit of quantum systems is one
of the oldest problems in quantum mechanics.
This problem appears whenever one formulates
a theory in terms of quantum (particle) variables
and wishes to interpret it in terms of classical
(geometrical) variables. The correspondence be-
tween classical and quantum variables is in gen-
eral ambiguous. However, Gilmore' and others
have recently shown that an unambiguous defini-
tion can be given whenever the operators X of

which one wants to find the classical limit belong
to any compact Lie algebra G, as for example,
the unitary algebra U(r). We have applied this
new and powerful mathematical method to the
study of the classical limit of the interacting-
boson model. ' As a result, we are able to show
that the Bohr-Mottelson liquid-drop model' ap-
pears (up to a homomorphism) as the classical
limit of the interacting-boson model. Thus our
study bridges the gap between these two models
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which have been widely used for the description
of collective states in nuclei.

7o begin with, we note that in the interacting-
boson model one describes an even-even nucleus
as a system of N bosons able to occupy two levels,
one with L = 0 (s boson) and one with L = 2 (d
boson). Denoting by b; (b, ) (i=1, . . . , 6) the crea-
tion (annihilation) operators for bosons (b, =—s,
b, , =d), it is ea.sy to see that the 36 operators
G;; = b, b,' close under the Lie algebra of U(6).
Thus, this problem satisfies Gilmore's criterion,
with ~= 6. Although, with the algorithm of Gil-
more et al. , it is possible to study a large num-
ber of classical properties of this quantum sys-
tem, in this letter we limit ourselves to: (i) de-
fine (up to a homomorphism) classical (geome-
trical) variables appropriate to the interacting
boson model, thus associating a "shape" to it;
(ii) construct, with these variables, an upper
bound to the total ground-state energy which con-
verges to the exact classical value when N —~,
and (iii) study the nature of possible phase tra. nsi-
tions. The construction of the X) algebra, differ-
ential operator, realization of the boson opera-
tors b,. ~, b, , which is equally possible, as shown
in Ref. 4, will not be discussed in the present
Letter.

The first question one has to answer is how
many classical variables are needed. Gilmore,
Bowden, and Narducci' have shovra thai for a
quantum system of N bosons described by the
group U(r), one needs r —1 classical complex
variables, the remaining complex variable being
eliminated by insisting that one must remain with-
in the totally symmetric representation [N] of
U(r) (conservation of boson number). Thus, for
U(6), one needs five complex variables. For
these one can choose, in principle, any conven-
ient parametrization one wishes. From the group
theoretical point of view, the most natural choice
is to use the variables associated with the coset
space U(r)/U(r —1) SU(1) (r = 6). This space,
labeled by coordinates x,, (u = 2, ~„., 6), may be
identified with the five-dimensional complex
sphere, the sixth coordinate x, being related to
the others by x,'+g„=,x„*x„=l. [Instead of five
complex x,. 's, ten angles 8;, qr, (i=2, . . . , 6) may
also be used. J Furthermore, it can be shown
that, for the study of static properties, the five
coordinates may be chosen to be real (p, =0,
i = 2, . . . , 6).' We find it convenient to introduce
the set of five real coordinates u„(p.= —2, —1, 0,
+1, + 2). While the coordinates x„(or8„,p„)are
in one-to-one correspondence with atomic coher-

ent quantum states, the coordinates we introduce
are in one-to-one correspondence with quantum
states of the form (st++„',u„d& ) i0), which
we will denote by iN, u) in the following. The co-
ordinates Q. are related to Gilmore's coordinates
O„bya stereographic projection from the "five-
dimensional" Bloch sphere onto a plane tangent
to it. Thus, in conclusion, the geometry of the
interacting-boson model is that of a five-dimen-
sional space. If one wishes, one may visualize
this geometry by associating to each point n, a
point on the surface of a deformed body with ra-
dius R/Bo= 1+Qp~ ~ u~F2~(8, p) The five vax'ia-
bles n& can then be replaced by two intrinsic
variables P, y and three Euler angles 8„8„8„
which determine the orientation in space of the
deformed body (Bohr variables' ). All these vari-
ables are equivalent, up to a homomorphism.
This establishes the correspondence between the
interacting-boson xnodel and the liquid-drop
model.

The next step is to provide, with the classical
variables introduced above, an upper bound to the
ground-state energy of the system, which, for N
-~, converges to the exact energy. This is sim-
ply done by constructing the energy functional

E(N, u) = (N, uiHiN, u)/(N, u(N, u), (1)

and minimizing it with respect to u, 5E(N, u}/bu
=0. This algorithm provides a rigorous defini-
tion of the equilibrium "shape" associated with a
given boson Hamiltonian B and boson number N,
which has the property of converging to the class-
ical equilibrium "shape" when N —~. We remark
incidentally that the new techniques developed by
Gilmore and Feng' also allow one to construct a
lower bound which converges to the exact energy
when N-~.

We are now in a position to calculate the equili-
brium "shapes" associated with the three limits
of the interacting boson model, (I) U(5), ' (II) U(3), '
and (III} Q(6)'. This problem is of particular im-
portance since these three limits have been ob-
served experimentally. These three limits, as-
sociated with dynamical symmetries of the Hamil-
tonian H, appear as shape phases at the classical
level (N —~). The technique described here al-
lows one also to give an algebraic description of
the nature of the transition between one phase and
another. In order to calculate the equilibrium
shape of the three limits (I), (II), and (III), it is
sufficient to consider the energy functional E(N, u)
associated with some of the Casimir invariants
of the respective group chains. For the limit (I)
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we take' H1') = en„ for limit (II) we take' H&")
= -l&[C SU(2)

—4N' —6N], where C EU12) is the quad-
ratic Casimir operator of SU(3) and for the limit
(III) we take' H"" '= ~'P, .The corresponding en-
ergy functionals in terms of Bohr variables are
given by

E1"')(P, y) = g'N(N —1)[(1—P')/(1+ P )]',
where only the values e, v, z' -0 are realistic.
By minimizing E(P, y) with respect to P and y,
one finds that phases (I) and (III) are y indepen-
dent and have minima. at p= 0 (phase I) and p= 1

(phase III). Phase (II) has a sharp minimum at
y=0'(axial symmetry) and P=&2. It is interest-
ing to note that if we reverse the sign of y= —v7/2
in the ope rator Q = (d t x s + s t xd) (2 ) + )((d tx d ) (' &,

the minimum appears at y = 60', P = v2, in agree-
ment with the reversal of sign of the quadrupole
moments in the quantum version. (We assume p
&0, 0' cy -60', as usua, l.)

In addition to providing a straightforwar d con-
nection with the geometrical description, the
algorithm discussed here allows one to study in
a rigorous way the nature of shape phase transi-
tions in finite nuclei. To this end, "one first
constructs the classical limit (N - ~) of some
appropriate combination of (2), then studies the

nature of the discontinuity at the critical point,

and, finally, converts this statement back to the
case of finite 1V where the phase transition does
not appear as a discontinuity but rather as a
more (N large) or less (N small) abrupt change
in observable quantities. For example, if one
wants to study the nature of the phase transition
between limits (I) and (III), one starts from the
Hamiltonian H&'+"') =H ')+H "'). Equation (2)
the gives for the energy per particle, when N —~,

2 1 2 2

where h =E/eN, 71'= z'(N —1)/e. As a function of
the coupling parameter q', the value of P for
which e is at a minimum, E~, shifts from /=0
(spherical limit, q' ~ ~) to p= [(1—411')/(1+41)')]~'
(deformed limit, q' ~ —,'). A study of S~ and its
derivatives at the critical point g'= g, ' determines
the nature of the phase transition. " This study
gives the following results: (a) The transition
from limit (I) to (II) is a first-order phase transi-
tion; that is, at the critical value q= q, =& [g= z(N

-I)/e], 6$~;„/6qis discontinuous; (b) the transi-
tion from limit (I) to (III) is a second-order phase
transition; that is, at the critical value q'= g, '

6'8 . /6q" is discontinuous; (c) between
limits (II) and (III) no phase transition occurs for
physical values of the coupling parameters ~,
~ 0. (A phase transition does occur for unphysi-
cal va, lues q" = K'/«0. )

The possibility to study phase transitions in
finite systems in a rigorous way opens a new per-
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FIG. 1. Two-neutron separation energies, (a) &2„, in the Nd-Sm-Gd isotopes and (b) in the Os-Pt isotopes, as a
function of the number of neutron bosons, +.
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spective into the analysis of experimental data
for phase transitions in nuclei. For example, the
Sm and Gd isotopes show a distinct discontinuity
in the two-neutron separation energies, $,„,
whereas the same quantity in the Os and Pt iso-
topes is smooth (Fig. 1). In the interacting boson
model, the former case is an example of a transi-
tion from symmetry (I) to (II),' while the latter
is an example of a transition from (II) to (III)."
Since S,„maybe related' to the derivative of the
ground-state energy with respect to q= z(N —I)/e
(or r)'), the results of the present paper agree
well with the experimental situation.

In conclusion, we have been able, using Gil-
more's algorithm, to (i) associate classical
shape variables to the interacting boson model;
(ii) construct an upper bound to the ground-state
energy which converges to the exact value when
N -~, and (iii) study the nature of shape-phase
transitions in nuclei. A full account of the details
of the derivation of the various results presented
here will be published elsewhere. "
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Note added —After this work was completed we
learned that a similar investigation has been per-
formed by J. N. Ginocchio and M. W. Kirsori. "
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