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It is shown that the trace anomaly is also identified with the Jacobian factor for the func-
tional measure under the conformal transformation in the path-integral formalism. The
path-integral formulation of anomalous Ward-Takahashi identities is then translated into
a simple algebraic characterization. of chiral and conformal anomalies. This exemplifies
some of the common features shared by the topological and nontopological anomalies.

PACS numbers: 11.10.-z, 11.30.-j
The anomalous chiral Ward-Takahashi (W-T)

identities' (Adler-Bell- Jackiw anomaly) can be
formulated in a simple manner with the aid of
the index theorem' in the path-integral formalism. '
It was also recognized that the chiral anomaly is
related to the fact that the covariant "energy"
operator P and y, cannot be simultaneously dia-
gonalized. 4 In the present note I show that the
trace anomaly' is also formulated as the Jacobian
factor arising from the conformal transformation
in the functional measure. ' I then translate the
path-integral formulation of anomalous W-T iden-
tities into a simple algebraic characterization of
chiral and confor mal anomalies.

I start with the simplest conformal-invariant
theory of a "free" scalar field in the background

suitably continued to the Euclidean space. The
Vifick rotation is performed in the local Lorene
frame' as h, " -+ih4" and v'-g =—deth&'- —ivg
—= —ideth„', where h, "(x) is the tetrad satisfying
h.~(x)h"'(x) =-g~(x).

As is well known, (1) is invariant under the
local conformal transformation

g~(x) -e' i" g~(x) [g (x) -e-' t"~g (x)],

q (x) -e "&"~ y(x),

soitkout the use of the equation of motion. This

(2)

gravitation field (R is the scalar curvature):

S-=-,' J[g"'s„ye, cp + —,
' Ry(x) y(x) j(K—g)d'x (1)
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property is compactly specified by

g S+ (P g O
5a(x) 5a(x)

which transforms under (2) as

P(x) —e "(")P(

The action S(g, y) =-S(g, y) satisfies the relation

I next define the scalar density field by

P(x) = [g(x) ] '~' y(x)

(6)

(4) instead of (3). The Euclidean path integral in the
background gravitational field is defined by

Z( gl"', J) = N ' fd p exp( fd4x [ 'g —~'( g"' 8 y& y+ ~6Ry') + i P(x)J(x) ]j .

After a change of the basis from the x representation to the n representation,

(7)

with a complete orthonormal set belonging to the IIexrnitian "energy" operator'

(DpD" —R/6) y„(x) = a„y„(x), f y„(x)y (x)g'~' dx = 5„

the path-integral measure with a weight' ~ is given by

(8)

(10)

The transformations (8) and (10) are formally unitary and the coefficients a„are ordinary numbers.
Because of this manifestly covariant definition of the measure, the basic integration variable inside
the action is given by p in (4), and the action S satisfies the identity (6). We thus obtain

6a(x) ', ~ 6a(x)
Z(g~, J) = (T~(x))g~(x)v'g= S

The use of y also shows that the energy-momentum tensor generated by the quantized matter field
(g~(x)) in (11) differs from the naive expectation value of the classical energy-momentum tensor de-
fined by 5S/6g~(x) with the original action S of Eq. (1); this property is partly responsible for the trace
anomaly generated by the quantized gauge field such as the electromagnetic field, ' although the gauge
field itself is scalar under the conformal transformation (2).

1 next derive the local W-T identity arising from the transformation of the integration variable (5).
Under this change of the variable, we have

P'(x) -=e ~"'P(x) =P„a„e &"'g' 'q„(x) -=Q a 'g' 4y (x). (12)

thus we obtain

&„'=Q fy„(x)e "&"&y (x)vgdxa
the source term in (7) for simplicity]

The Jacobian factor for infinitesimal a(x) is then
given by

dp, '=exp[-P„)a(x)y„(x)y„(x)g~'dx]dp, . (14)

The W-T identity is a statement that the variation
Of the action S and the variation of the measure
exactly cancel, namely, 6 ~Z/5a(x) —= 0. We thus
obtain the conformal W-T identity [by discarding

with

A (x) -=P„q„(x)y„(x). (i6)

(17)

Combining (ll) and (15), we have the bare form
of the trace identity:

g"'(x) (T~ (x) ) = —A„(x) .
The anomaly factor (16) may be evaluated by
summing the series starting from the small ei-
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genvalues A.„ in (7):
4

Ae(e)= limg)e„(e)eeP( —e„/Ri)Pe„( )e= lim, „+,[Re"" R„,„e—Re"R++DeD„R)I,
N~~ n

where the well-known result appearing in the intermediate stage of the f regularization is used. If
one renormalizes the relation (17) in the flat space-time limit, one recovers the anomalous trace iden-
tity"

g "'(x) (T„,(x) ) „,= 2660, [R~ R ~ 8
—R"'R ~ + D"D„R].

The chiral anomaly' and the trace anomaly
treated here both arise from the two basic mani-
pulations in the path-integral formalism: We
first choose the basis vectors which diagonalize
the basic covariant Euclidean "energy" operator,
and then examine the behavior of the functional
measure defined on the basis under the (local)
symmetry transformation one is interested in.
If the symmetry operator and the covariant "en-
ergy" operator commute, the measure trans-
forms trivially and no anomaly term arises. The
anomaly is thus characterized by the noncommu-
tativity of these two basic operators appearing
in the theory. This can be seen in the present
case by a formal introduction of the Hermitian
generator W of the global conformal transforma-
tion U(a) -=e' ":

U(n) g~(x)U(n) '=e' g""(x),

U(a) p(x) U(n) -' = e "y(x) (20)

and U(a)A„(x) U(o.) '=A„(x) for a generic gauge
field A&. It is then easy to confirm that

i[W, 2(D~D" +R)]=2X-R(DPD" —+R), (21)

which may be compared with the chiral trans-
formation

i [y„P]= 2iyg. (22)

The relation (21) with the same weight factor 2 in
the right-hand side also holds for the covariant
"energy" operator of general Yang-Mills fields.
For the fermion field, (21) is replaced by

i[W, P]=g (23)

which arises from the tetrad h, "(x) in p-=y'h, "(x)
xDp,' the covariant derivative D& here may con-
tain the Yang-Mills (and electromagnetic) fields
in addition to the gravitational field.

The anomaly factors are given by the quantum
mechanical /ocaE expectation values of these com-
mutators (21)—(23), as is expected from the varia-
tional derivative; for the chiral symmetry' one
may examine an asymmetric transformation g(x)

! - exp[iu(x)y, ] y(x) and p(x) —(C)(x) exp[ —ia(x)y, ],
and for the conformal symmetry a global trans-
formation. We thus have

(cp(x)DpD" ——,
' R] y(x))=Aux)

with A~(x) in (16), and the chiral anomaly'

(y(x) 2iy, )kg(x) )= 2+„j„(x) y, P„(x)

with

(24)

(25)

Py„(x) = ~„P„(x),

fy (x) ()) (x)g 'd'x=5
(26)

The use of the (local) index theorem' in (25) im-
mediately gives rise to the well-known chiral
anomaly. ' [The zero eigenvalues of the covariant
"energy" operators should be carefully treated
in (24) and (25). A symmetry-breaking term such
as a mass term for the fermion, for example,
gives rise to an extra term proportional to the
mass in (25), corresponding to the right-hand
side of

~„j~,=2Imj, —,Tr *F"'F„,
Bv2

with A„= igA„'T'. ]
As was noted elsewhere, 4 the chiral anomaly

does not involve any divergence and it is quite
stable in the sense that any prescription of sum-
mation starting from small eigenvalues (i.e. ,
small in their absolute values) always gives rise
to an identical result in (25). In contrast, the
conformal anomaly (18) diverges in the first
place. It also appears to depend on the geodesic
biscalar o(x, x') [a generalization of R(x —x')' in
the flat space] if one uses the f regularization in
the curved space, ' and it is not easy to see wheth-
er the finite part of (18) is regularization inde-
pendent. It is, however, easy to check the regu-
larization independence of the trace anomaly as-
sociated with the background gauge field in the
flat —space-time limit. ' The relation (23) gives
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the (bare) trace anomaly arising from quantized fermion field in the background Yang-Mil» field,

A,( ) -=&y( ) 4y( ) & =&„y„( ) 'y„( )

with the eigenfunctions (26). This may be evaluated by changing the basis to plane waves as
4

A~(x) = lim P P„(x) tf(X„'/M')g„(x) = lim Tr, e '«*f((P/M)')e'«'
n M ~~

4
= lim TrM 4 f(—k "k& +2ik&D" /M+D&D"/M +(1/4M2)[y", y ]F„~).2m' (28)

(29)
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The energy operator in the right-hand side is re-
sponsible for the anomalous behavior.

with A„—=i' &'T'.
The algebraic characterization" (21)-(23) de-

fines the anomalous symmetry, which can poten-
tially lead to the anomaly. The symmetry is
anomalous in that it is a symmetry of the La-
grangian but not compatible with the covariant
"energy" operator, which is indispensable to de-
fine the time-ordered product. The anomaly is
thus best defined in the basis which diagonalizes
the covariant "energy" operator; the anomalous
behavior in perturbation theory is traced to the
failure of a naive unitary transformation of those
basis vectors to plane waves. " For a xenormal-
izable theory, the form of the Lagrangian is not
altered by higher-order effects. This property
becomes important in the fully quantized theory,
as my derivation of W-T identities relies on the
bare form of the Lagrangian.
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By expanding (28) in powers in 1/M, we obtain

A~(x)= iim Tr, dk'k'f(k) —,Ei'"i'
24~'

where the trace runs over the Yang-Mills internal
indices. The coefficient of the finite term I' E~ No. PHY 79-06376.
is independent of any smooth regulator f(z) which
rapidly approaches zero at z = ~ with the normal-
ization f(0) = 1. This shows that A~(x) has a well-
defined meaning once it is renormalized at the
vanishing background field, and it leads to' Permanent addr

S. Adler, Phys. R(T~(x))„„g~=—,TrF~F~
24& R. Jackiw Nuovo Cio
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