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port of other photoexcited states in Si and Ge.
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Quantum Magnetic Hamiltonians with Remarkable Spectral Properties
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The Hamiltonian, H, of a spinless particle moving in two dimensions in an axially sym-
metric magnetic field B(o) is considered. If B(p) ~p~* for p large with 0<a <1, then it
is shown that H has spectrum [0, <) with only eigenvectors and eigenvalues dense in [0,%).
If @ = 1, then the spectrum is a dense point spectrum in [0,c] for suitable ¢ and absolutely

continuous in [¢,=).

PACS numbers: 71.55.Jv, 71.30.+h

A subject of current interest is the study of
quantum Hamiltonians describing electrons in
random potentials. In terms of the spectrum,
the conventional wisdom® is that in one dimen-
sion, H, after adding a suitable constant, will
have the following properties (Type I): The al-
lowed energy values (spectrum) are [0, =) but
there is a complete set of eigenvectors. This is
accomplished by having eigenvalues ), which are
dense in [0, «).

In more than one dimension, the expectation is
Type II: The spectrum is still [0,«), There is a
number d (the “mobility edge”) with dense point
spectrum in [0,d] and with absolutely continuous
spectrum in [d, «).

Until one is used to it, these spectral proper-
ties are rather surprising, in part because one
cannot write down an explicit “random” potential.
For this reason, there may be some point in find-
ing explicit Hamiltonians with these properties.
We emphasize that no relation is claimed between
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the physical reasons for the spectral types found
below and those in random systems. These re-
sults are, at this point, something of curiosities,
but may have some relevance to physics in suit-
able magnetic fields. There also may be some
point in studying transport at the mobility edge in
these problems.

To begin with some explicit examples, let p
= (x*+9%)"2, Then, the combination of operators

() (i) o

has type-I spectral properties® if O0<a <1, type-
Il withd =c® if a =1. For a>1, the spectrum is
purely absolutely continuous.

The point of the proof of these properties is to
note that (1) is the Hamiltonian of a spinless par-
ticle in two dimensions moving in a magnetic
field, so that different spectral properties can be
obtained by working in different gauges.
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Let
H(a)=(-i8/8x = a,)* +(-i8/3y - a,)?, @)

and let B=vxa=29,a,~8,a,. We first assert that
if B—~0 at infinity, then® the spectrum of H(3) is

[0,%). To prove this we first note Weyl’s crite-

rion® for the spectrum: E<& o(H (2)) if and only if

there exists a sequence ¢, of vectors with

|[H®) -E]p,l-o0. (3)

If vX3’ =B also, then® e!*H(@')e"**=H @) for suit-
able . Thus, for (3) to hold, it suffices to find
a gauge,’® &/, with

7 @) - Ep,ll - 0; @)

one need only take ¢,=e** j,. We will take the
gauge

a',(x,y)= [ B(s,y)ds; a’,=0.

Since B -0 at infinity we can find a sequence of
numbers 7, so that everywhere in the square of
side » side centered about (0,7,), one has |3’ (x,
y)| <2°". Take a fixed smooth function, 1, van-
ishing outside the unit square with L?-norm 1,
fix £, and let

Do, y) =e®n " n(x/n,y —rn/n).

Then (4) holds with E =k2. Since % is arbitrary,
the spectrum of H(a) contains [0, ) if B~0 at in-
finity. Since H(@)=> 0, the spectrum equals [0, »).

To analyze the spectrum further, we suppose
that B is axially symmetric, i.e., B(x,y)=b(p).
Pick the radial gauge

a(x,y)=yp"'a(p), a,lx,y)==xp 'a(p),

with
a(p) = (Zp)'lfop sb(s)ds.

In this gauge, H(a) commutes with L,=i"'8/8¢
and, restricted to functions with L,= (indicated
by the symbol [),

H(@)[(Ly=m)==08,+m% % =2mp™'a+a®

This operator is the same as the (L,=0 opera-
tor for the potential problem with potential

V=m% "%=2mp 'a+d’.

Since b — 0 at infinity, p~'a— 0 at infinity. If sb(s)
— o at infinity, then a - « at infinity so that V

~ o at infinity and hence each H (@) [(L,=m) has
point spectrum, indeed® localized eigenvectors
with exponential falloff. Thus the spectrum H (a)
is pure point but of necessity dense. We sum-
marize with Theorem 1: If b— 0 at infinity but

pb(p)— « at infinity, then H(a) has type-I spec-
trum.
Next suppose that

b(p)=cop t+dop 2 +0(p™ 7€), (5)
Then

a(p)=3co+3p 'np +0(p™ ™€),
so that

V=%c®+3cop  Inp =mp lc, +0(p 17 €),

For such potentials, one knows® that — A pt+V has
discrete spectrum in (=, j¢,?) and absolutely
continuous (Coulomb-type scattering) states in
[4co2, =), so that (Theovem 2) if (5) holds, then H
has type-II spectrum with d = ic,2. Similar argu-
ments show that (Theorem 3) if b(p)=cp~®
+0(p~*71) with @ > 1, then H has purely absolute-
ly continuous spectrum

Some insight is obtained by noting that a clas-
sical particle moving in an axially symmetric
magnetic field obeying Eq. (5) will be able to es-
cape to infinity rather than be trapped by the field
if and only if the energy is larger than ic,2. In-
deed, this follows easily by looking at conserva-
tion of energy and angular momentum as in the
quantum case.
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IThere are now rigorous proofs of the one-dimen-
sional result for suitable random potentials; see
1. Gol’dsheid, S. A. Molchanov, and L. Pastur, Funkts.
Anal. Prilo. 11, 1 (1977) [Funct. Anal. Appl. 11, 1
(19771 .

%J. Avron, I. Herbst, and B. Simon, Duke Math. J.
45, 847 (1978), already noted that when 0<w <1, there
is a complete set of normalizable eigenstates but they
did not note that o(H) = [0,~) and thus the denseness
of the eigenvalues.

3A similar argument with an z-dependent gauge
proves the same result in three dimensions; see
K. Miller, unpublished.
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SFor simplicity we suppose that 2 and & are smooth,

%See, e.g., R. Lavine, J. Funct. Anal. 12, 30—54
(1973). :
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