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Test of the Gravitational Inverse-Square Law at Laboratory Distances

R. Spero, ' J. K. Hoskins, R. Newman, J. Pellam, and J. Schultz
DePartment of Physics, University of California, trvine, hvtne, California 92717

(Received 3 January 1980)

The inverse-square distance dependence of the gravitational force has been tested over
a range of approximately 2 to 5 cm, by use of a test mass suspended from a torsion bal-
ance to probe the gravitational field inside a mass tube. The result supports an inverse-
square law. Assuming a force deviating from inverse square by a factor [1+s lnr(cm)]
it is found that s = (1+ 7) && 10 '.
PACS numbers: 04.90.+e, '06.30.-k

A number of different ideas have recently been
discussed which suggest the existence of forces
which could manifest themselves as a deviation
from inverse-square distance dependence of the
gravitational force on a laboratory distance scale
(1 cm-1 km). These ideas include modified theo-
ries of gravity'; exchange of a low-mass axion,
of a variety undetectable in other tests'; and a
long-range component of the strong interaction,
arising from two-gluon exchange. ' Of particular
interest is the observation by Scherk that super-
gravity unification theories lead naturally to an
effective weakening of the gravitational force at
short distances, possibly on a laboratory scale,
so that inverse-square tests might provide evi-
dence for such theories.

An experiment indicating a breakdown of the
inverse-square law has, in fact, been reported
by Long. ' Comparing the effective gravitational
constant at two distances, Long finds G(4. 5 cm)
to be smaller than G (30 cm) by (0.37+ 0.07)%.
This result has inspired a number of other in-
verse-square tests, ' but to our knowledge no re-
sult with sensitivity comparable to Long's has
been reported. We report here an experiment de-
fining a range of distances (close to Long's) and
a condition (null experiment) in which, with sen-

sitivity greater than Long's, we find no anomaly.
Our experiment uses a torsion balance (Fig. 1)

to measure the change in the force acting on a
test mass suspended inside a long hollow cylin-
der, as the cylinder is moved laterally. For an
infinitely long perfect cylinder and exact inverse-
square force law, the gravitational field due to
the cylinder vanishes everywhere inside it, just
as inside a spherical mass shell. For our finite
cylinder of length I.= 60 cm and inside diameter
D =6 cm there exists a small net "end-effect"
force on a test mass located near an inside wall,
smaller than the nearly balanced opposing forces
due to near and far walls by a factor (D/L)' = 10 '.
Thus to compare the gravitational force at the
distances from the near and far walls in our cyl-
inder, to a level of 1 part/10', we need measure
the end effect force to only 1 part/10'. Further-
more, the residual field in the cylinder is such
that we need measure only the relative motion of
the-cylinder to just 1 part/10', while the absolute
position of the cylinder relative to the test mass
need only be known to a few millimeters. (The
homogeneity and geometry of the cylinder itself
must be known with precision on the order of 1
part/10'. ) By averaging data taken at a set of
equally spaced azimuthal orientations of the cyl-
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TABLE I. Components of the Newtonian total torque change ~ experi-
enced by the balance in a measurement cycle, calculated assuming an in-
verse-square force law.

Interaction
Torque contribution

{10 6 dyn cm)

Cylinde~est mass
Cylinder balance
Ring.&est mass
Ring-balance
Car~est mass and balance
Cylinder nonuniformity correction
Tilt effect
Magnetic coupling
Total

-25.83+ 0.01
0.10+ 0.08

28.54+ 0.03
-0.02+ 0.01
1.74+ 0.05

-0.02 + 0.06
-0.04+ 0.03
0.00+ 0.08
4.47 + 0.14

was 6.67x10 'dyn cm' g '. (2) The torque asso-
ciated with the cart on which the cylinder rides,
determined experimentally from runs made with
the cylinder removed from the cart. (3) Correc-
tions for deviations from perfect geometry and
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homogeneity of the cylinder. Deviations from
perfect geometry were measured with 10 '-m
resolution by use of a commercial differential-
gaging instrument. Variations in cylinder mass
distribution were determined by computer-con-
trolled axial scans at various azimuths of the
transmission of y rays through the cylinder walls.
The geometry and mass measurements led to
corrections in the predicted AF of -0.044+ 0.005
and + 0.011+0.029 pdyn cm, respectively. The
correction applied is an unweighted average of
these values, with an assigned uncertainty equal
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FIG. 2. (a) Distribution of 132 measurements of Ai,
the torque cho~~e on the balance in a roundtrip cylin-
der-ring cycle, with Newtonian prediction indicated
above. (b) Measured ~l as a function of cylinder azi-
muthal orientation.
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FIG. 3. Allowed values of the parameters & and &,

assuming the anomalous interaction of Eq. (2). The
region above the lower line is excluded by this experi-
ment with 20' confidence. The upper shaded region
represents 1-standard-deviation limits for (&, &) values
consistent with Lorg's experiment (Hef. 5).
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V(r) =(-G Mm/r)(1+o. e "'"). (2)

Assuming this form we may use our data to de-
termine the range in (a, y) parameter space

to their difference. (4) It was found that the
change in position of the cylinder produced a
10 '-rad tilt in the torsion balance mount, which
coupled via the electrostatic damping plates into
a 6 signal. The tilt was reduced by a factor of
10 by a remote device which applied, via wires,
a compensating torque to the balance mount; the
residual tilt and its effect were determined, yield-
ing the tabulated correction. (5) A limit on mag-
netic coupling between cylinder and test mass
was estimated by determining the change in meas-
ured 4F after removing the magnetic shielding.
(8) Other possible sources of systematic error
such as thermal effects and nonlinearity or hys-
teresis in the torque measurements, were inves-
tigated experimentally and found to be insignifi-
cant.

Comparing the total Newtonian predicted hI"
with the experimental value we find

() =- d, I'(exp) —d I'(theor)

=(+0.02+0.14)x 10 ' dyn cm.

Long has suggested a parametrization for a force
law anomaly of the form

G = 6 (r ) = G,[l+ e lnr(cm)]. (1)

Assuming this form for G(r) in analyzing our da-
ta we find ~ = (I+ 7)x 10 ', compared to the value
required to fit Long's data: e„=(200+40)x10 '.
Another form for an anomaly, suggested on theo-
retical grounds by several authors, ' takes for the
energy of masses M and ~ separated by y

which is excluded with 20 confidence. This ex-
cluded range is shown in Fig. 3, along with the
locus of possible (n, X) combinations (with a & 0)
determined in this model by Long's result. Long
has suggested' that the anomaly he finds might
conceivably arise from a vacuum-polarization
effect analogous to that which produces a loga-
rithmic deviation from inverse-square behavior
at very short distances in the electric force be-
tween charges. Such an effect might not be ob-
servable in a null experiment such as ours, Long
argues, because of the lack of a polarizing field
in the region probed by the test mass. This sug-
gests that nonnull tests of the inverse-square
law may be desirable.

We are grateful to J. Faller, D. Long, and
F. Reines for helpful discussions. This work
was supported by the National Science Foundation.
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Can One Measure Strong Corrections to %eak Decays' ?

G. Eilam~'~ and J. P. I eveille
Physics Department, University of Wisconsin Madison, Madison, —Wisconsin 53706

(Received 7 January 1980)

It is found that some decays of bottom and top mesons, such as B, -pp, can proceed
only via diagrams conjectured to play an important role in CP nonconservation, dd = ~

dominance, and Cabibbo-suppressed charmed-meson decays. These new decays are esti-
mated and predictions are presented for charmed-meson decays. All predictions depend
crucially on the relative importance of certain strong corrections to weak process (pen-
guins) .

PACS numbers: 14.40.Pe, 12.40.Cc, 13.26.+ m

Nonleptonic weak decays involve both the strong
and weak interactions, and are not fully under-
stood so far. Important progress has been made

for understanding the M= ~ rule in strange de-
cays' ' and CP nonconservation, ' ' with the inclu-
sion of the so-called penguin diagrams (see dia-
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