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A one-electron atom in a general curved space-time is considered. The Hamiltonian
of the Dirac equation is found in Fermi normal coordinates, and expressions are obtained,
to first order in the Riemann tensor, for the shifts in energy of the 1S,,,, 2S,/,, and

2P/, levels.

PACS numbers: 98.80.Dr, 04.90.+e, 31.10.+z

The energy levels of an atom placed in a region
of curved space-time will be shifted as a result
of the interaction of the atom with the local curva-
ture. This effect differs from the usual gravita-
tional and Doppler shifts in that it perturbs each
energy level to a different extent. Thus, in prin-
ciple, atomic spectra carry unambiguous informa-
tion about the local curvature at the position of
the atom. These shifts would be appreciable only
in regions of large curvature. For example, my
results show that for the energy level shifts in
hydrogen to be of the order of the Lamb shift (4.4
x107° eV), the characteristic radius of curva-
ture of space-time would have to be about 10°3
cm. Nevertheless, any effect which can allow
one to unambiguously place upper limits on (or
possibly measure) the local curvature of distant
regions is of interest.

The calculation of the energy levels of a one-
electron atom is curved space-time also presents
interesting problems of a theoretical nature.
There are contradictory conclusions in the litera-
ture, and to our knowledge no one has given ex-
plicit expressions for the energy level shifts, as
I do here. A critique of the previous literature,
including references, is given by Audretsch and
Schafer,' who considered the hydrogen atom in
certain cosmological metrics.

I assume (i) that a metric description of space-
time is valid, (ii) that the generally covariant Di-
rac equation governs the system, (iii) that, to
good approximation, the atom is in free fall along
a geodesic of the space-time during the time re-
quired for an atomic transition, and (iv) that the
time rate of change of the Riemann tensor as
measured along the space-time path of the atom
is sufficiently small on an atomic time scale that
well-defined energy levels exist. The metric is
otherwise arbitrary.?

The Dirac equation is®**

Hx)v, +m]yY@x)=0, (1)

where
YEE Y ) +y (e P (x) =284 (x), (2)

and V, denotes the covariant derivative acting on
the four-component spinor field $(x). Minimal
coupling to the electromagentic field is included
in our definition of V,. One can show that the
conserved scalar product, which reduces to the
usual scalar product in flat space-time, and
which has the properties required of a scalar
product in a Hilbert space, is

(@ ,¥)= - i Ja* - go 1By°(x ), (3)

where 8 is the standard Dirac 8 matrix (the proof
is based on the probability current density intro-
duced in Ref. 4). The Hamiltonian form of Eq.
(1) is

i Y =HY (4)
with
H=—i(g%) '@, =T ;) +il, - i(g°) y°m, (5)

where the ', are the spinor affine connections,
including an additional term —-ieA,1, where e is
the magnitude of the electron charge and A is
the electromagnetic vector potential. If time de-
rivatives of the Riemann tensor in a locally iner-
tial proper frame of the atom are neglected in ac-
cordance with assumption (iv) above, one finds
that H is Hermitian with respect to the scalar
product of Eq. (3). I may therfore interpret H

as the observable corresponding to the energy of
the system.

In Fermi normal coordinates,’ each spacelike
hypersurface of constant x° is generated by the
set of spacelike geodesics normal at a point to
the timelike geodesic G along which the atom is
falling. The time x° of an event in the hypersur-
face is the proper time along G at the point where
it intersects the hypersurface. These coordinates
are normal along the geodesic G. Therefore,
Fermi normal coordinates are appropriate for a
problem involving energy levels (in contrast, for
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example, to Riemann normal coordinates which are only normal in a neighborhood of a space-time
point). The metric in these coordinates takes the form to first order in the Riemann tensor® 7:

— 1 —_2 1,.m — 1 1, m
o0=—1=Ry 10, x'x™, £0;==FRgimx' %™, 8:i=0;;— 3R jmxx™, (6)

where Latin indices range from 1 to 3, and R, ,, is evaluated at the point at which the constant x° hy-
persurface intersects G [Ru,, »o is regarded as a slowly varying function of x° in accordance with as-~
sumption (iv)]. The curvature appearing here is that of the background geometry which I seek to meas-
ure, and not that generated by the atom itself.

I find to first order in the curvature that the electromagnetic vector potential produced by a point of
charge Ze is

Ay==Zer ' +iZe(R+4R ) +Ze(3R,,,° =R, ) x '™ ™, )
and
A,=3ZeRr +}ZeR,,, % x™r . (8)

(Effects of finite nuclear size would be treated as an additive perturbation.) After a long calculation,
one finds that the Hamiltonian of Eq. (5) is

H=H,+H,, (9)
with
Hy=—ia% +mp-Cr-t, (10)
and
i . i ini & i i i
HI=‘§Rowm"l"ma‘ai'ngmxlxm“Ja'“ERozjmxlxmajatai"‘Z'Roumxlxmaz
i i . .
+‘4‘C!J(ij _ROJOm)xm +Z azajROimJ xm+6L§Rolmixlxma‘7 ! +%§R0iair

- %2—!:(le + 3R010m)xlxm/r‘.1 +-1].2-§(13 + 4R00)r +%mR010mx1xmB - émR'iZOmxlxmBai ’ (11)

where ¢ =Ze2, and the @’ and B8 are the standard Dirac matrices. This result includes all terms of
first order in the curvature tensor. I have checked by direct calculation that H of Eq. (9) is Hermitian
with respect to the scalar product of Eq. (3). On the other hand, neither H, nor H, alone is Hermitian
with respect to that scalar product.

Therefore, one must exercise care in developing the perturbation theory of stationary states based
on the flat space-time relativistic Hamiltonian H,. Working to first order in the curvature, I find after
calculation that the energy level shifts E,® (i=1,...,n) of an n-fold degenerate energy level E® are de-
termined by the equation

det[(®,9,H,4,),-E ,V5,,]=0, (12)

where the zpa“’) (@=1,...,n) are n orthonormal eigenvectors of H, corresponding to the degenerate eigen-
value E@, and the subscript “0” on the scalar product denotes the usual flat-space-time scalar pro-
duct

@,¥)o=Jdx @ Ty. (13)

[For convenience, we will refer to Eq. (13) as the flat scalar product and Eq. (3) as the curved scalar
product. The zpa(") are orthonormal with respect to the flat scalar product.] The expression in Eq. (12)
has the same appearance as in flat space-time, except that H; is not Hermitian with respect to the flat
(or curved) scalar product. The reality of the E,-@ is assured by the Hermiticity of # with respect to
the curved scalar product.

The orders of magnitude of the matrix elements of the various terms in H; are obtained by making
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the following substitutions in Eq. (11):
x*~€'lm'l, ai"'ém, ai"'é, B~1’ Roc875~D-2,

where D is the characteristic length or radius of curvature of the space-time at the location of the
atom. The largest term in H, is 3mR ,;,,, x'x™B, which is of order £ “?»"'D"2, and corresponds in the
nonrelativistic (low electron velocity) limit to the geodesic deviation term in the classical Hamiltonian
(e.g., see p. 34 of Ref. 7 on the geodesic deviation force).

Inserting the known exact spinor solutions® of the eigenvalue problem for H, in the matrix elements
of Eq. (12), Ifind after a lengthy calculation that both of the degenerate 1S, /, levels are shifted by the
same amount:

E")(lsl/z) =1—12§ ‘2-,v(y +1)(2y + 1)m"R00 +-7—1§(2'y +1)m " Y(3R + 4R00), (14)
where
y=(1-524, £=Ze2 (15)

This expression includes all terms linear in R, and is valid to all orders in . One expects a re-
sult to this order in the curvature to involve only R, and R because E® must be invariant under the ro-
tation of the spatial axes of a locally inertial rest frame of the atom. The quantities R and R, are eval-
uated at the center of mass of the atom in a locally inertial rest frame of the atom, and m is the re-
duced mass. Other small perturbations—such as nuclear effects, radiative corrections, and the rela-
tivistic correction to the value of the reduced mass—would, of course, be added to the curvature shift
calculated here. Expanding y in Eq. (14) gives

EY(1S,/,) =38 "2m Ry +5m YR = 3Ry,) +O(E2m ™ 'D7?). (16)

The degeneracy of the 1S,/, levels is not removed to first order in the curvature. I intend to carry the
calculation to second order in the curvature, which should result in a splitting of the 1S,/, levels.

The 2S,,, and 2P, /, eigenstates of H, are fourfold degenerate. One can use parity selection rules to
show that the matrix elements of the largest term in H,, namely 3mR,,,x'x™B, vanish when taken be-
tween a 25/, state and a 2P, , state. Therefore, to lowest order in ¢ the 2S,/, and 2P, /, levels are not
mixed. I find that, in lowest order, the energy of the 2S,,, states is separated from that of the 2P/,
states, and each of the resulting energy levels is twofold degenerate. The energy shifts are, to lowest
order in ¢,

E(D(2SI/2)= TC"*m ™ 'Ry, (7)
and
EY(2P,/,)=5C "*m 'R . (18)

The terms of lowest order in ¢ in Eq. (16) and Eq. (17) are the same as would be obtained by use of the
geodesic deviation interaction, 3mR ;,,x'x™, with the nonrelativistic Schrodinger equation. However,
the results given above also hold when the curvature term is too small to be retained in the nonrelativ-
istic limit of the Dirac equation. The splitting of the 2S,/, and 2P/, levels in hydrogen caused by the
curvature will be of the same order as that caused by the Lamb shift (4.4x107® eV) when the charac-
teristic radius of curvature, D, is about 10°® cm. The nonrelativistic limit with the curvature term
is valid in hydrogen for D <107* cm, when the perturbation would be larger than the relativistic fine
structure, and would be readily observable.

The energy shifts E® obtained above are those which would be measured by a detector located near
the atom and at rest relative to the atom. A distant observer would see additional Doppler, gravita-
tional, and cosmological shifts affecting all spectral lines uniformly, and thus separable from the ef-
fects calculated here.

The terms in E? calculated above vanish in a region where R, is zero. However, that is not true
for other energy levels or to higher order. For example, in the nonrelativistic regime, I find that the
shifts in the three 2P levels are

El(l) =3072m Ry + ZROxOx)y Ez(l) =3 -2m—l(Roo +2R g303), E3(D =3 -zm_l(Roo*’ 2R 40, ), (19)
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where the x, y, and z directions of the normal coordinates have been chosen such that R;,; is diago-
nal at the origin. For the Schwarzschild metric with the ¥ axis of the normal coordinates in the radial
direction, one has® R,,=0, R, =2M7"3, and Ry,y=R,,,=—Mr %, where M is the Schwarzschild mass
(G=1) and 7 is the Schwarzschild radial coordinate. In future work, I will extend the present results
in both the nonrelativistic and relativistic regimes. These results are independent of the theory by

by which the curvature tensor R,,,, of the space-time is generated.

Finally, I note that the above expressions can be written covariantly with the aid of #*, the four-velo-
city of the atom, and the three spacelike unit vectors ¢;"(i=1,2,3) which are orthogonal to »* and point
along the principal axes of R,;,; in normal coordinates. The results for E® calculated above are con-
tained in the covariant expression

P =EOy+ (AR, ,utu” +BR +CHR " "uL ;o )u”, (20)

where P* is the energy-momentum four-vector of the atom, E® is the rest energy of the atom in flat
space-time, and the constants A, B, and C*/ are determined for the 1S/, level by Eq. (16), for the 2S,/,
and 2P, levels to order §{ "?m™'D"? by Egs. (17) and (18), and for the 2P levels in the nonrelativistic
regime by Eq. (19). It follows that the total rest energy of the atom is affected by its motion relative
to a curved space-time.
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