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results. Finally, with an increase in tempera-
ture, we observe an overall broadening and gra-
dual decrease in the intensity of the spin-wave
peaks. No qualitative change in the spectra was
observed on cooling the sample through T„at
23 K.

In summary, we have established a band of spin-
wave excitations in 1D Ising-type antiferromag-
netic system. These excitations seem to be re-
lated to the motion of domain-wall pairs in the
chain. The motion of domain walls should also be
manifested in the central component of the S„(Q,
u) response function. It was first predicted by
Villain" that at low temperatures the spin dynam-
ics of an antiferromagnetic linear chain can be
governed by propagation of thermally excited do-
main walls. Such a problem is presently under
investigation.
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The ground-state properties of a generalized quantum s = 2 XY mode1 (including the
ferromagnetic and antiferromagnetic cases) in a Z field on a triangular lattice are ex-
amined. The exact values of critical fields above which the gap opens are obtained. A
real-space renormalization-group method is used to estimate the ground-state energy and
to analyze the critical behavior. There is some evidence that certain features of frustra-
tion in classicaI spin systems stiII persist in quantum systems.

PACS numbers: 75.10.Jm, 64.60.Fr

We consider a generalized spin-& planar quantum model with a transverse field:

H = —(Z/2) g [cos8(S,"S,."+S,.'S,.') +sin8(S, "S,' —S S,")j-h+S
4) jq Il ~ Il,

where h &0, Z&0, S"=(', ,'), etc. , and 8 is a pa-
rameter. The near est-neighbor interaction in
(1) is a quantum extension of the classical inter-
action —J cos[8 —(cp,. —y;)] which is minimum
when the angle y,. —cp,. between neighboring spins
is 8. (For 8v 0 or m, it is necessary to intro-
duce a conventional orientation i -j of each bond. )

For h =0, Hamiltonian (1) includes, as spe-
cial ca.ses, the ferromagnetic (F) XY (8 =0) and
the antiferromagnetic (AF) XY (8 = ~) models; it

! also includes for 8 = p/2, the Dzialoshinsky-
Moriya (DM) model which was introduced, along
with the XF model, to describe the weak ferro-
magnetism (but, to date, only for classical spins).
On bipartite lattices, Our model is equivalent to
the F XY model (it suffices to rotate each spin of
one sublattice by 8). The study of (1) becomes
very interesting on nonbipartite lattices, which
give rise to "frustration" for classical AF Ising
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interactions, a typical example being the triangu-
lar lattice.

The study of frustration in quantum systems
started when Anderson' suggested analysis of.the
nature of the ground state (G.S.) of the AF s =-,'

Heisenberg model on a triangular lattice where
Neel-type antiferromagnetic order should be re-
placed by a liquid-type order. ' We have recently
done a renormalization-group calculation of the
AF Isin'g model on the triangular lattice, with a
transverse field h.' We have found that the char-
acteristic "frustrated" properties of the classical
(h = 0) model' persist up to a critical field (h/j ),
= 1.41, which is strongly reduced compared with
the E value (h/Z), = 5.~ It is therefore tempting
to study another quantum model which does not
display the Ising symmetry: the s = —,

' XY model,
or a generalization thereof, Eq. (1), whose G.S.
is completely unknown for all 8. Mattis' has
pointed out that on nonbipartite lattices, the G.S.
of the AFXF model could be different from that
of the F XF model. More recently, Marland and
Betts' investigated the G.S. of the AF XF model
on a triangular lattice by extrapolating from ex-
act finite-cell calculations. They observed an im-
portant increase of the G.S. energy compared to
the F case, but they emphasized a difference with
classical systems: The degeneracy of the G.S.
is not greatly increased here.

The purpose of this Letter is to announce the
results of an extended analysis of Eq. (1) on the
triangular lattice for finite fields and for differ-
ent degree of frustration, introduced here gradu-
ally by varying 8. We present the evidence that
on going from F to AF situations, several effects
reminiscent of frustration in classical systems
appear: a general shrinkage of the low-energy
spectrum reflected by (a) strong reduction (by
factor of 2) of the critical ratio (h/J), above
which a gap opens, (b) an important increase of
the G.S. energy (for h = 0, -E,/N- 1.5 and 0.88
for F and AF, respectively). The central result
here is that (c) the fully frustrated AF case [and
equivalent situations 8 =w/3 (mod2m/3), see be-
low] has its scaling properties peculiar to its
own nature, whereas any other situation, includ-
ing intermediate cases like DM, etc. , has the
properties of the F case. In addition, (d) an in-
crease of density of states near the bottom of the
energy spectrum, reflected by a larger exponent
z (where z tells how energy scales with length),
and an increase of the decay rate of spin corre

FIG. 1. The triangular lattice in 2D with the con-
ventional orientation of the bonds and the three sub-
lattices A., B, C used in text. Also shown are two
adjacent blocks used for the renormalization-group
calculations with their intrablock (thick lines) and in-
terblock (dashed lines) couplings.

lations (larger exponent g) appear.
Before presenting the calculations let us speci-

fy that on the triangular lattice the bonds have
been oriented as in Fig. 1 to define unambiguous-
ly the sign of the antisymmetric part of (1). Also
all the properties of (1) will depend on 8 with pe-
riod 2n/3: Rotate the spins on sublattices A, B,
C of Fig. 1 by, respectively, 0, +2m/3, —2n/3;
then (1) maps on itself by changing 8 into 8+2'/3.
In particular 8 = n/3 is equivalent to the AF case,
so that, by simply varying 8 from 0 to m/3, we
go continuously from the unfrustrated to the fully
frustrated situation.

The critical field is obtained by equating the
G.S. energies E„=—Nh and E„,=e„,—(N-2)h
of the two subspaces g", S,'=N and +,S,'=N 2. -
Thus, we find h, = —e„,/2, where e„,denotes
the lowest energy, for h =0, in the subspace
g", S =N 2. The c-alculation of e„,is standard
(it is similar to finding the edge of a conduction
band for an electron hopping on a triangular lat-
tice). Considering a parallelogram of N, rows
and N, columns, we can express any wave func-
tion g in the one-spin deviation subspace as a
combination of the functions q, , which corre-
spond to a spin flip located at row i and columnj: g=ga„. cp, , After writing that g must be an
eigenvector of H we find a set of coupled equa-
tions for the a;,-'s which can be solved after a
Fourier transformation, by assuming periodic
boundary conditions. We then get the whole en-
ergy spectrum in this subspace:

e„,(k„k,) = —2J'(cos(k, —8) +cos(k, —8) +cos(k, +k, +8)), (2)
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where k; =2mn;/N, (i =1,2), n, =(-N„-N;+1, . . . , N, —I). After minimizing, we find e„,and

(h/J), = 3 cos(8 —2nm'/3) for (2n —1)z/3& 8 & (2n+ 1)m/3. (3)

The curve giving (h/J'), as a function of 8 is plot-
ted in Fig. 2 (full upper curve) .In the F case [8

=0(mod2m/3)] we recover the exact result. ' We
observe that h, (AF) =0.5h,(F).

The calculations of the G.S. energy (h =0) and of
the critical behavior were performed with use of
a recent renormalization-group method well suit-
ed for quantum systems. ' Since here [H,QS,']
=0, we have followed closely the procedure used
for the one-dimensional (1D) XY model' and for
the 2D XY model on several lattices. " Here, the
lattice is split into adjacent hexagonal blocks of
n, = 7 sites, coupled together by three original
bonds, their centers forming a new triangular
lattice dilated by f =u 7. At each step of the itera-
tive procedure we solve the Hamiltonian exactly
for one isolated block and we retain the lowest
two states of energies E, and E to define a new
spin per block. For h =0, these states are de-
generate and belong"" to the subspaces

g S,'=+1.
block

But, when searching the critical field location,
we must consider'" the G.S. of the subspaces

Q S =+ 5 and + 7.
block

Then, in both cases, by expressing the old spin
operators in terms of the new block-spin oper-
ators we can get spin recursion relations neces-
sary to rewrite the original interblock couplings.
If we drop a constant term ,'(E, +E ) "—', the Ham-
iltonian can be rewritten always in the same form
and we can derive implicitly the recursion rela-
tions giving h "",J ""~, 8 ""ias functions of
h "', J ", (9 ", which can be iterated up to a
"fixed-point" Hamiltonian. For any initial values
of h 'i, J'", 8 '~ we observe that 8 "'-0 (mod2n/
3) except if 8 '~ = m/3 (mod2z/3), where 8'"~ re-
mains constant. Thus, in the case h =0, where 0

is the only relevant parameter, 8 = 0 (mod2m/3)
and 8 =p/3 (mod2m/3) are, respectively, stable
and unstable fixed points. On the other hand,
when dealing with the renormalization-group
transformation constructed from the subspaces

g S,.' = + 5 and + 7,
block

we find a critical curve (h/J), reported in Fig. 2

(dashed curve). The comparison with the exact
curve (full curve) gives an idea of the approxima-

i tions. Also on the critical line, 8 =0 (mod2m/3)
is stable while 8 =p/3 (mod2v/3) is unstable. This
leads to a crossover phenomenon. The crossover
exponent 4 for h =h„8 =w/3, which compares the
instability in 8 with the instability in h/J, is
found to be 4 = 1.38. A more detailed analysis of
both the region 0&k &h, and the crossover phe-
nomenon for 8 close to w/3 will be described
elsewhere. "

The critical exponent z telling how the energy
scales is deduced from the renormalization of J
at the fixed point: s = —ln(J"" /J'" ]/lnf. The
exponent g giving the power-law decay of the spin
correlation function, (S;"S;+„")„„R", is esti-
mated as in Refs. 2, 9, and 10, from the renor-
malization-group transformation of a spin aver-
age over the block. We give the results for z and

q in Table I for the four interesting situations h
=0, 8=0 and 8=@; h =h„8=0 and O=p. As in
the ferromagnetic case" the exponents at (h/J),
are larger than those for h = 0. But the most im-
portant point to be noticed is that the AF expo-
nents are larger than corresponding F ones, re-
flecting the peculiar scaling properties of this
fully frustrated situation.

The G.S. energy per site was evaluated by cum-
ulating the constant terms (E, + E )&")/2 divided

(-E /N0

FIG. 2. Exact results for the critical field (full up-
per curve), and renormalization-group results for the
critical field (dashed upper curve) and for the 0. S.
energy per site.

1553



VoLUME 44, NUM+JR 2$ PHYSICAL REVIEW LETTERS 9 JUNE 1980

TABLE I. Exact and renormalization group (R. G.) results for the lo-
cation of the critical field and R. G. results for the G. S. energy per site
and for the critical exponents, in the two F (6 = 0) and AF (0 = ~) cases.

(h/Z).
Exact R. G.

(—z/x)„,
R. G.

0 (F)
71 (AF)

3
1.5

2.78
1.20

1.50
0.88

0.045
2.03

1.21
3.04

1.09
1.84

2.04
2.16

by the number of sites at each step which is 7"":
Z 1 " Z ~ "i+Z ~"~

Z 7n+1
n=0

(4)

In the case of a small compact block, such as
that used here, which does not retain the ratio 5,
between the number of sites and bonds of the in-
finite lattice, (4) gives only a lower-bound esti-
mate of the G.S. energy. An alternative (upper
bound) estimate is obtained by dividing instead by
the number of bonds at each step, 3& 7"+' —3"+',
and then multiplying the result by b, = 3:

] g ( )+g ( )

Z 7n+1 3nii (5)
n=0

The arithmetical average between these two esti-
mates, E/N =-—1/2(E +E')/N, gives generally
good results in 2D when comparing with other
estimates. " Here, the curve giving -E/N as a
function of 8 is reported in Fig. 2 (full lower
curve). We find -E/N=1. 5 and 0.88 for 8 =0 and
L9 = z, respectively, in reasonable agreement with
the previous estimates of Marland and Betts'
(-E/N=0. 9 in the AF case). But more charac-
teristic is the shape of the whole curve -N 'E(8),
which follows that of (h/J)„showing the general
effect of frustration, i.e. , a general shrinkage of
the energy spectrum near the bottom of the con-
tinuum revealed by a strong reduction of both the
critical field and the absolute value of the G.S.
energy.

It is instructive to compare our results with the
properties of the classical (spin ~) AF XY model
on a triangular lattice. Here also the G.S. ener-
gy is raised and the nature of the G.S. is more
complicated than in the F case" while the classi-
cal DM model maps onto the F situation.

The question of the existence of long-range or-
der in the G.S. for this quantum model is still dif-
ficult to answer. Our renormalization-group cal-
culations give here no long-range order (for any
8) while finite cell calculations for the F XY s = —,

model on 2D lattices suggest long-range order. "
This renormalization-group study will be ex-

tended to other spin systems such as the Heisen-
berg spin- —,

' AF model, on a triangular lattice. It
can be also extended to quantum systems on other
types of 2D or 3D fully frustrated lattices and on
partially frustrated regular or disordered lat-
tices.
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