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Site-Selective Doping of Compound Semiconductors by Ion Implantation
of Radioactive Nuclei
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Sn impurity atoms have been selectively inserted on the two different substitutional
lattice sites in the III-V semiconductors GaP, GaAs, GaSb, InP, InAs, and InSb.
Radioactive "BIn+ and '"Sb+ ions which decay to the Mossbauer state of "8Sn have been
implanted. From the isomer shifts determined in Mossbauer-emission experiments
it is concluded that the implanted In and Sb ions selectively populate III and V sites,
respectively.

Doping of semiconductors by ion-implantation
techniques is widely utilized for technological as
well as for research applications. Mainly ions
of the desired dopant elements have been implant-
ed. Here we report on a nem method, particular-
ly attractive for doping of compound semicon-
ductors. The radioactive ions that are implanted
decay to the desired dopant element. As shown
in the present investigation, this method enables
a selection of the lattice site for, e.g. , ampho-
teric dopants like Sn in III-V semiconductors.
Although technological applications might be
hampered by the relatively large amounts of ra-

dioactivity needed, the method has promising as-
pects for microscopic investigations of dopant
properties.

Radioactive '"Sb' ions were implanted at room
temperature at an energy of 80 keV to a dose of-10" atoms/cm' with an isotope separator. The
'"Sb activity was obtained from a bombardment
of natural tin with 20-MeV n particles by a pro-
cedure described previously. ' The radioactive
'"In ions were obtained as proton induced fis-
sion products in a uranium carbide target irradi-
ated by 600-MeV protons from the CERN synchro-
cyclotron. Following on-line mass separation in
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FIG. 1. Mossbauer emission spectra from "~In in
Inp measured at liquid-nitrogen temperature. A

CasnO, resonance counter was used. An unannealed
sample (spectrum a} and a sample annealed at 2'10'C

for 1 min (spectrum b) have been measured.

the ISOLDE mass separator, ' the 60-keV ions
were implanted at a rate of —5x 10' ions/s for
—4 min. All implanted semiconductor single crys-
tals were n-type material.

The experimental problems of measuring Moss-
bauer emission spectra for the weak "'Sb sources
(T„,=38 h, source strength -1 p, ci) and the
strong '"In sources (T„,=2.1 min, source
strength -10 mCi) were solved by the applica-
tion of fast resonance detectors. ' Extreme source
strength was essential for the '"In experiments
since spectra had to be measured within a few

minutes. Details of the experimental procedures
will be published elsewhere.

Two Mossbauer spectra measured at —77 K
from implantations of "'In into InP at room tem-
perature are shown in Fig. 1. Spectrum a was
measured within 4 min after the implantation,
spectrum b within 4 min after an annealing of the
sample for 1 min at 270'C subsequent to the im-
plantation. The spectra have been analyzed in
terms of two independent emission lines as indi-
cated in the figure. The broadened line at 5 =2.8
mm/s is seen to decrease after the annealing of
the sample. This is attributed to the annealing
of a parent '"In-vacancy complex, from which
this line originated. Similar impurity defects
have been found in most room-temperature im-
planted compound semiconductors. Their Moss-
bauer parameters and annealing properties will

FIG. 2. Mossbauer emission spectrum from ~Sb

in Inp (annealed at 350'Q for 20 min) measured at
liquid-nitrogen temperature with a CaSn03 resonance
counter.

be reported elsewhere. Since the complex de-
fects annealed between 200 and 400 'C for all im-
planted semiconductors, predominantly single
lines were left over in all spectra after an appro-
priate annealing. Such a spectrum for an Sb im-
plantation in InP is shown in Fig. 2. The single
emission lines were in all cases nearly unbroad-
ened (& 10%) indicating that the implanted atoms
are in locally undisturbed cubic surroundings.

Figure 3 displays the isomer shifts of the sin-
gle lines from annealed samples versus the lat-
tice constants of the host materials together with
the values for substitutio. nal Sn in group-IV ele-
ments. While the isomer shifts from the Sb im-
plantation in the III-V compounds fall on the line
for group-IV elements, the values from the In
implantations are systematically lower. Substi-
tutional Sn in group-IV elements is known to have
eleetronie structures similar to those of the host
materials due to a redistribution of the Sn valence
electrons according to the bond character of the
hosts. 4 If an analogous redistribution is assumed
for the Sn impurities in III-V hosts, the differ-
ence in isomer shifts for In and Sb implantations,
respectively, can be attributed to the population
of the two different substitutional lattice sites in
these compounds. As a consequence of the ionici-
ty of the compound bonds in comparison to the co-
valent bonds of the elemental semiconductors,
the electron density at the nucleus is unequal for
these two sites. ' From chemical considerations,
it may be expected that the electron density and

hence the isomer shift is lower for the III than for
the V site. Therefore, from the experimental re-
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It is interesting to note that the above assign-
ments are in accordance with those from Moss-
bauer experiments on implanted "' Sn in GaAs, '
where it was concluded that Sn occupies the Ga

site for annealed samples, in perfect agreement
with electrical measurements. ' Obviously, for
a detailed understanding of the Mossbauer param-
eters, quantitative model calculations are re-
quired. Nevertheless, qualitatively the basic
features seem to be explained by the above con-
siderations.

The method of site-selective doping is expected
to be applicable also for other dopants in III-V or
II-VI compound semiconductors.

This work has been supported by the Danish
Natural Science Research Council and the Accel-
erator Physics Council.

FIG. 3. Dependence of isomer shifts for Sn in ele-
mental and compound semiconductors on the lattice
constants of the host materials. Sn implantations in
the elemental semiconductors are indicated by filled
circles, ' ~In implantations by open circles, and "~Sb
implantations by rectangles. The isomer shifts are
given relative to CaSn03.

suits it is suggested that In and Sb as elements of
groups III and V, respectively, preferentially oc-
cupy the III or V sites, respectively, when im-
planted into the III-V compound semiconductors.
For the Sn atoms on the V sites the associated
shallow acceptor levels can be assumed to be oc-
cupied in the n-type material used here. Howev-
er, since these electrons are not localized on the
impurity atoms, their electron densities and iso-
mer shifts are close to those for Sn in the group-
IV elements. On the other hand, Sn on III sites
may or may not be positively charged according
to the details of the differently doped n-type ma-
terials; in any case, the surplus electron will be
loosely bound only. Thus a lower electron density
at the nucleus should result in agreement with the
experimental finding.
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