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Ferromagnetic Superconductors: A Vortex Phase in Ternary Rare-Earth Compounds
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It is shown that the generalized Ginzburg-Landau free-energy functional of Blount and

Varma admits self-consistent solutions with quantized-flux vortices, magnetized in a re-
gion about the cores. There is a temperature range where the new phase has a lower free

energy than. either the pure superconducting or pure ferromagnetic phases; it represents

true coexistence of ferromagnetism and superconductivity. The main features of the

specific heat and magnetic properties of some rare-earth ternary compounds can be ex-
plained qualitatively.

PACS numbers: 74.60.-w, 75.10.Lp, 74.70.Rv

In the search for coexistence of superconduc- Most theoretical studies of these systems' have

tivity and ferromagnetism two classes of ternary emphasized the Cooper-pair-breaking role of
rare-earth compounds are especially interesting: spin-spin coupling. This manifest itself (a) via
the rare-earth molybdenum chalcogenides and the spin-flip scattering and (b) via conduction-elec-
the rare-earth rhodium borides'. For example, tron polarization. But recently several authors'
the compound ErRh4B4 becomes superconducting have stressed the role of the direct coupling via
(Type II) at a temperature T„=8.5 K, but ceases the magnetic field. In particular BV' suggest that
to be superconducting -and becomes magnetical- this is the. dominant mechanism, and have pro-
ly ordered at T„=0.92 K. posed a generalized Ginzburg-Landau (GL) model;

they introduce the free-energy functional

+ = J d'r & l ~. I yl'+lp. I yl'+(@'/2~) I I
- iv —(2e/ac) A] gl'+ (8~)-'H'

+ l~.lM I'+ lp. IM I'+ ll'I » I'+ l (q, I ~ I'+n, I ~MI')
I pl'), (1)

where H=B —4&M and B=V&&A, and where our
definition of the dimensionless coefficient a dif- Magnetic order is however not confined to the re-
fers from that of BV: o. =nBv-4~. In the ab- gion where g is small; its attenuation is charac-
sence of superconductivity our n is directly re- terized by a scale length longer even than the

lated to the Curie temperature T„ in the same London length X. The spontaneous magnetization

way as 0., is related to T plays a role analogous to external field in the

a, =n„(1—T/T„), a„=a,(l —T/T ). (2)

The terms containing the coefficients I', g„and
q, are, respectively, the contributions from the
stiffness of the magnetization M, the polarization
of conduction electrons, and the spin-flip scatter-
ing. We believe, with BV, that the terms in g,
and n, are of secondary importance; henceforth,
for simplicity, we shall ignore them. We differ
from BV in that we do not require I' in order to
stabilize the magnetic/superconducting state; in

the BV screw structure I' plays an essential role,
despite its smallness (I/I-10 '). In an analogy
to the mixed state of a regular Type-II supercon-
ductor we seek a self-consistent vortexlike state
of coexistence between superconductivity and fer-
romagnetism. We find such a solution: a vortex
structure with f vanishing along the vortex cores,
and with spontaneous magnetization around the
cores. Near the center of a vortex, g rises rap-
idly to its bulk value with a healing length $ =A/t&.

g,'=- n, /p, , A. '=16m/, '/mc',

H, '=2nn, '/P„~, =-a„/~. .
(4)

We also introduce the GL parameter K, the ratio

Abrikosov problem.
Note that even at the vortex core H does not

vanish; in other words, the magnetization does
not attain the value which would be optimal in the
absence of superconductivity. The vortex state is
a compromise: Both the superconducting order
and the magnetic order fall short of their individu-
al optimum values. The new phase is character-
ized by the true coexistence of superconducting
and ferromagnetic order, such that the total free
energy is minimized.

We define dimensionless units by

x =y r, K = H/4 2Hp, a = A/v 2H, A, .

(3)
b =B/~2H, , m =M/M„ f =g/g, ,

where
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f of magnetic to superconducting free-energy densities (at T =0), and two other dimensionless parame-
ters & and y:

K = 8e'AH '/h'c' f =a 2p / 'p 2mf 1 —T/T 4n l.

a 0 1 —T/T„' a Oy 1-T/T„' (5)

To construct an explicit solution of the GL equations for a single quantized vortex, we assume axial
symmetry about the z axis, and rewrite the free energy (1) in cylindrical polar coordinates (per centi-
meter):

F =2H, 'A'fo d. xx((l —T/T„)'[-f'+2f'+K 'f" +(Q'/x')f'+h']+g(]. -T/T )'[ m'+-,'m']] (6)

Here we have assumed the single-flux-quantum
condition f(x) =f(x)e and have defined' Q =K '
-xg. Functional differentation of I' with respect
tof, m, and Q gives'

—K 'x '(d/dx)(xdf/dx)+x 'Q'f =f -f',
m -m=eh,3

(7)

(8)

and a second-order equation for Q which is con-
veniently decomposed into two first-order equa-
tions:

dh/dx =-x 'Qf',

d Q/dx = -x(h+ym).

(9)

(10)

Equations (9) and (10) are, respectively, the Max-
well equation curl H = (4&/c) J and the definition B
=curl A in dimensionless units and with axial
symmetry.

The system of Eqs. (7)-(10), contains, implicit-
ly or explicitly, five material parameters:
T„, T„, a „and f The m. ethod of solution will,
necessarily, be numerical. We must therefore
choose values for these parameters before we can
proceed. In order to interpret the experimental
results' for ErRh4B4, we shall choose T„=10K,
T =1.5 K, K =10, a„,=60, and &=10. To moti-
vate this choice of a, and f, we note that at zero
temperature M, satisfies M, (0) = (a„,/p )'"
= piN, where for Er the magnetic moment pl of
a single ion is -5 Bohr magnetons, and where
N is the number of magnetic ions per unit vol-
ume. The unit cell is nearly cubic with side -6
A, and hence N -5x10" cm '. The ma, gnetic GL
coefficients also satisfy a,'/4P =NgT„. Elimi-
nating P„, we find a, - 60. The analogous rela-
tion for a, , P, is a„2/4P, =H, /8m = N, kT„(kT„/
eF), where N, , the number of conduction electrons
per unit volume, is -20 N . The factor kT„/eF
-10 ' reflects the fact that only electrons in a
shell of thickness -AT„close to the Fermi ener-
gy &F take part in the superconducting transition.
Comparing these energies, we find $-10.

Note that the equations reduce to Abrikosov's
when e =y =0. We therefore expect a solution
similar to Abrikosov's and indeed we shall find
such a solution. The dimensionless radius of the
"nonsuperconducting" core is v ', the magnetic
induction b falls off with a characteristic length
-1, and the total flux is one quantum, 4, =mac/e.
The magnetization is even more spread out than
the induction; quite a small density of vortices
will allow a fair degree of homogeneity of the
magnetization.

The asymptotic solution is straightforward;
assume that m is small, and neglect its cube in
Eq. (8). Then the equations become identical' to
Abrikosov's, but with a rescaled length unit: x'
=A, 'r(1-ye) 'i . Provided' that 1 —ey) 0, we re-
cover an Abrikosov-like vortex, with nearly ex-
ponential decay

m —h Ko[x (1 —ye)'"]

(1 —T/T„) h,h, —f(1 —T/T ) m,m2, (12)

We have integrated the equations numerically
for several temperatures. Figure 1 shows the
behavior off, m, h, and b, over the entire plane,
for T =0.75 K. Note that at this temperature (1
-ye)"' is quite small, and hence m is still about
a third of its maximum value at x =2. In contrast,
b is -0 byx =2.

We must still show that this solution of the GL
equations represents a minimum of the free en-
ergy. Substituting our solution back into (6), we
find that there is a transition temperature T„-0.9T, below which'' is negative, i.e., the vor-
tex is stable.

As soon as one vortex is energetically favored,
many will appear. Their equilibrium distance is
determined by their interactions. When the vor-
tices are well separated, the interaction energy
is the integral of
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FIG. 1. Numerical solutions for a single vortex: 1'
=o 75&m-

over the region where the "tails" of m and h over-
lap. For parallel vortices (12) is negative; i.e. ,
magnetic vortices attract at large distances. At
short distances they repel; the equilibrium dis-
tance at T =0.8T isx, -2. The temperature de-
pendence of x, is weak; the main influence of tem-
perature is to change the value of M, .

The transition at T„ is qualitatively like the
Abrikosov transition at H, y But the attraction
between vortices will lead, prima facie, to a
rather weak first-order transition. In tempera-
ture units the latent heat wi. ll be roughly T (1
—T„/T )'-10 ' K

The lower critical temperature T„will be giv-
en by the intersection of the free-energy curves
for the vortex phase and the pure ferromagnetic
phase (see Fig. 2). T„will be characterized by
the collapse of the superconducting order, as
well as by a possible jump in the magnetization
(since in the vortex phase m is in the range a

&m(1). The collapse of superconductivity will
contribute T„(1—T„/T„)(T„/e.F)(N, /N ) ™2x10'
K to the latent heat. Thus, even if these is no dis-
continuity in the magnetization, the transition at
T„ is much stronger than that at T„.

In contrast to the Abrikosov structure, the di-
rection of the magnetic induction is not deter-
mined by external constraints. Indeed in our iso-
tropic model, the direction of the vortices is ar-
bitrary. The vortex structure is less regular
than Abrikov's, because the orientational degrees

of freedom are easily excited. This explains qua-
litatively the increase' in the specific heat of
ErRh484 between 1.3 K, which we tentatively iden-
tify with T„, and 0.93 K (T„). (Even real aniso-
tropic materials have several distinct axes of
easy magnetization).

Another experimental result' which our picture
explains is the fall in the critical field H„as T-T„+0. The magnetization contributes to the
magnetic field, so that near T„ the induction B
will attain the value II„when the applied external
field is still well below B„.

It should be possible to detect the magnetic vor-
tex structure in neutron-scattering experiments.
The distance between vortices is -100 A, quite
similar to the Abrikosov lattice. It may already
have been seen: Moncton's' small-angle neutron-
scattering results are strikingly similar to those
of the Saclay group on Nb in the mixed phase. '

To conclude, we have demonstrated the possi-
bility of a vortex phase which is both supercon-
ducting and ferromagnetic. We should remark
that in principle the vortex phase which is both
superconducting and ferromagnetic. We should
remark that in principle the vortex phase could
persist down to zero temperature for suitable
values of the parameters.
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Neutron profiles of spin waves in the 1d Ising-type antiferromagnet CsCoC13 were re-
examined. Instead of well-defined magnon peaks, the spin-wave spectrum consists of a
band of magnon states arising from the motion of domain-wall pairs. At the magnetic
zone center, the energy of this band extends from 2J(1 —2&) to 2J(1+2&), whereas at the
zone boundary a sharp resolution-limited peak at ~ -2J is observed.

PACS numbers: 75.30.Ds, 75.25.+z, 75.50.Ee, 75.60.ch

Statics and dynamics of spins in nearly ideal
one-dimensionaI (1D) magnetic materials have
been widely studied in the past several years. '
The magnetic compound CsCoC1, has been found
to behave as an antiferromagnetic chain of spins
with S= —,'.' Tellenbach' and recently Yoshizawa
and Hirakawa4 have measured the spin-wave spec-
trum of CsCoC1, and found it to conform to the
Ising-type Hamiltonian

3C = -2~; [S S,„'+e(S;"S;+,"+S S;„')]

+ZZ+ +X/

with J= 6.5 + 0.5 me V and e = 0.094.' These values
of J and e were arrived at by use of the spin-
wave dispersion for anisotropic antiferromagnetic
chains derived by des Cloizeaux and Gaudin (dCG)'
and Tellenbach. ' In the experiments of Refs. 3

and 4, the peak position of the spin waves could
be obtained with certainty, but the neutron inten-
sity and resolution were not sufficient to permit
a detailed investigation of the line shape of neu-
tron profiles as a function of Q and temperature.

Very recently, starting from the Ising Hamil-
tonian X„and treating X„, as a perturbation,
Ishimura and Shiba' have calculated the dynam-
ical correlation functions S„„(Q,~) and S„(Q,~)
for S= —,', 1D, Ising-type antiferromagnets given
by the Hamiltonian (1). Their calculations show
that the spin-wave dispersion in such systems is
not an isolated branch calculated by dCG, but that
it consists of a continuum of excited states. The
spin-wave excitation spectrum calculated by
Ishimura and Shiba thus looks like a band of states
with energy extending from 2J(1 —2e) to 2J(1+ 2e)
at the zone center, whereas at the zone boundary
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