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Charge-Density Variation in a Model of Amorphous Silicon
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' and Jagannath Rath

Solid State Science Division, Argonne National Laboratory, Argonne, illinois 60439
(Received 22 October 1979)

A population analysis of the one-electron eigenfunctions of random-network models of
amorphous silicon shows fluctuations of the net atomic charge of about 0.2 electron units
rms. The majority of the charge is calculable from a linear function of the deviations of
first-neighbor distance and of the interbond angle from their values in the crystal.

PACS numbers: 71.25.Mg,
' 61.40.Df, 71.50.+t

In previous publications, we have presented
the electronic structure of amorphous silicon
as computed for the continuous-random-network
model. In this Letter, we show that the electron-
ic structure, insofar as it deviates from that of
the crystal, can be partly understood in terms
of the distortions of the immediate surroundings
of individual atoms.

As described previously, ' computer programs
have been written which generate examples of
continuous-random-network models in which
every atom is exactly fourfold coordinated, and
which satisfy periodic boundary conditions. In
all cases dealt with here, the repeating region
was initially a cubical portion of a bcc crystal
whose edges were three unit cells long, holding
54 atoms, each joined randomly to four of its
eight neighbors. By successive modifications
of the bond pattern, the energy of the system,
as calcu&ated at the minimum of the Keating po-
tential' for each pattern, was lowered until fur-
ther changes seemed to be practically unattain-
able. At this stage, a particular example was
retained as being realistic if its residual angular
distortions were sufficiently smaQ, as deter-
mined by comparison with experimental mea-
surement' of the width of the second-neighbor
peak in the radial-distribution function. The
model-building program will be published else-
where. It should suffice now to remark that the
success of the program is much enhanced if, dur-
ing the process of modification, the effects of
angle distortions are exaggerated by choosing
the ratio of bending to stretching force constants
in the Keating potential to be about 2 instead of
0.3 as observed' in crystalline Si and Ge.

The orthogonalized linear combination of atomic
orbitals method used for the electronic-structure
calculation has been fully covered previously. ~'
We recall only that the periodic models have one-
electron eigenfunctions g (k, r) which are linear
combinations of Bloch sums &;„(k,r), the latter

being Ss - and SP-like functions that have been
orthogonalized to the 1& —,. . ., 2P, -like Bloch sums
formed from core states. This reduction of the
basis set (from 9 to 4 per atom) makes it feasible
to compute the states of models having 50-100
atoms in the repeating unit with a negligible loss
of accuracy.

& crystalline silicon, aD atoms are equivalent,
and it is impossible to assign other than just four
valence electrons per atom. In the amorphous
form, on the contrary, all the atoms are rendered
inequivalent by the static Quctuations in environ-
ment, and one expects to be able to assign a dif-
ferent charge to each. This has already been
shown by Ching and Lin' for particular one-elec-
tron states in the framework of the present ap-
proach. If we write the one-electron eigezdhnc-
tions as

g (k, r) = Z Z &;„b;„(k,r)
a=I 5=3,

. (N being the number of atoms in the repeating
unit), then, following Mulliken, ' a parameter
measuring the localization can be defined by

P(m, k) = [Z~ (f —1/N)2]~~2

where

f„=Pv, „Qv,,o
B.i

is the fraction of an electron contributed to atom
& from the state m (0 s,;; is the overlap integral
between orbitals &, centered on atom &, and j,
centered on atom P).

We propose the following obvious extension of
this analysis. The formal charge state, q, of
a particular atom & can be calculated as

where the sum is over occupied states, and the
factor of 2 comes from the spin-paired double oc-
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cupancy. The composite result of the analysis is
shown in Fig. 1, the data coming from three ex-
amples of 54-atom nets. Although the average
charge is zero, there are not infrequently atoms
which deviate from neutrality by more than 10%
of the number of valence electrons, and the stan-
dard deviation is about 0.2 electron. Since, as
remarked above, this charge is zero in the (or-
dered) crystal, it has the significance of a "dis-
order" parameter in the glass. We shall, in
what follows, refer to the crystal to define the
atomic environment of minimum energy, and
shall seek simply to relate the charges to local
deviations from that environment.

We show first, in Fig. 2, for a typical 54-atom
example, how q varies with the average distance
to the four ligands of &. A correlation is inescap-
able, and it is also clear that the sign of the
charge is the same as that of the deviation of the
mean distance from the ideal value, r„ in the
crystal. A similar correlation is shown in Fig. 3,
where q~ is plotted against the deviation from
the ideal value of the average distance between
atom e and its twelve second neighbors. Recall
that the variation in second-neighbor distance in

the glasses is almost entirely due to variation in
interbond angle, and observe that, in Fig. 3, the
sign of q is the same as the sign of the independ-
ent variable. It is then clear that Fig. 3 points
to the mean angle deviation as the relevant vari-
able, the angles in question being measured be-
tween two bonds meeting at the first neighbors
of the given atom, not at the atom itself.

We are thus led to try the following function
for the charge:

q=a g * +b Q(cp;-y, )+c.. . , (2)
+0 j=l

Lwhere cosgo= —3. The results of a least-squares
fit are given in Table I, along with various struc-
tural characteristics of the three examples treat-
ed.

Examination of Table I shows, first, that the
coefficients a and b of the function (2) are fairly
closely determined by the fit to 54 points in each
case. Second, the variations in a, b, and & from
one example to the next are well within their
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FIQ. l. Histogram of charge distribution for three
54-atom examples. Charge in electron units.

FIQ. 2. Variation of charge with average fractional
deviation of first-neighbor distance from ideal value.
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FIG. 3. Variation of charge with average deviation
of second neighbor distance from ideal value, in units
of ideal bond length.

statistical errors. Third, the constant & is close
to zero on the average. Since the examples were
constructed quite independently, these facts all
speak for a considerable physical basis for (2),
which we try to explain below.

The formal charges are affected by the varia-
tions in atomic positions in two ways; directly,
by the attendant changes in the overlap integrals,
and less directly, through the Schrodinger equa-

tion, whose solutions produce unequal coefficients
on different atoms. The electron excess on atoms
whose neighbors are closer to it than the average
(Fig. 2) can thus be interpreted either as an in-
crease in overlap of atomic orbitals or as a tend-
ency of the valence electrons to be more dense
where the attractive potential is greatest, or as
a combination of both. The separation of these
effects is beyond the scope of this letter. Some
idea of their relative importance can be obtained

by summing in (l) over unoccupied states. Be-
cause of charge conservation, we wouN have q
——q, and the slopes in Figs. 2 and 3 would be
negative. Hence, the observed correlations must
be largely features of the energetically favored
states. The correlation with angle deviation
(Fig. 2) suggests strongly a connection with the
directionality of the sP' hybrids forming the co-
valent bonds that account naturally for the struc-
ture of the amorphous phase.

Since Eg. (2) accounts on the average for over
60% of the computed charges, it seems reason-
able to look for other simple geometrical varia-
bles that would determine the remainder. For
instance, one would expect some inQuence of the
angular distortions at the central atom. %e have
found no effect linear in the mean angular distor-
tion, and only a small effect quadratic in this
variable. Other nonlinear terms have been tried
without success. If our continuing efforts along
these lines lail, we may be forced to the (unlike-
ly to us) conclusion that the residual charge is
determined by functions of the coordinates of
four or more atoms. In that event, it will be dif-
ficult to get much insight into the physical fac-
tors underlying the electronic structure of glasses
typified by amorphous Si.

Apart from any attempts at explanation, the
charge distribution is accessible experimentally,
as shown first by Klug and %bailey. ' They in-
ferred from the infrared absorption spectera of

TABLE I. Summary of properties of three 54-atom examples of random-network models, and least-squares
parameters of Eq. (2).

Model
No.

Geometric deviation
Bond Ar~le

length (Vo) (rad)

Charge deviation
(rms, electron units)

From From calc. ,
neutrality Zq. (2)

2.3
3.4
2.6

0.21
0.21
0.23

0.17
0.21
0.19

0.07
0.08
0.08

2.10+ 0.31
1.95+ 0.23
2.15+ 0.37

0.174+ 0.022
0.164 + 0.022
0.162 + 0.022

-0 018+ 0 064
0.027+ 0.057
0.028+ 0.072
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amorphous Si and Ge that the atoms carry charg-
es. However, they have interpreted the spectra
as giving the average displacements of the atoms
from their positions in a crystal, an admittedly
unrealistic picture. We suggest the following al-
ternative procedure: The vibrational modes of
a specific model can be calculated, as we have
done previously. ' Given the vibrational eigen-
functions and the atomic charges (computed as
we have or by an equivalent method) for that
model, the dipole matrix elements can be eval-
uated, and the infrared spectrum can be calculat-
ed by averaging over a suitable frequency inter-
val. The result would be subject to the double
uncertainties introduced by the incomplete know-
ledge of the interatomic potential function and by
deficiencies in the electronic solution, but the
former could be practically eliminated if accurate
neutron inelastic-scattering experiments could
be performed. The infrared spectrum would thus
be a rather direct probe of the electronic struc-
ture.

We thank D. D. Koelling, T. S. Gilbert, and
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was supported by the U. S. Department of Energy.
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(

The magnitude, anisotropy, and temperature dependence of the H~2 for Nb are calculated

from the underlying electronic structure. Excellent agreement between theory and ex-

periment results if experimental Fermi velocities are used and if Fermi-velocity-anisot-

ropy, strong-coupling, and impurity effects are included.

PACS numbers: 74.70.Lp, 74.70.Dg

The highest magnetic field which a type-II
superconductor can sustain in the superconduct-
ing state is denoted H~, the upper critical field.
For a given material ll~ depends upon sample
purity, temperature, and the direction of the ap-
plied field relative to the crystal axes. In this
paper, the magnitude, anisotropy, and tempera-
ture dependence of H~ of Nb are calculated from
its electronic structure.

In order to calculate H~ one should include (1)
an extension of the usual Ginzburg-La. ndau-
Abrikosov-Gor'kov' ' theory to handle the non-

local effects which enter at temperatures below
T„' " (2) finite-mean-free-path effects due to
impurity scattering, ' "' "(3) strong-coupling
effects, ""(4) the wave-vector dependence of
the Fermi velocity, ''o '4 and (5) the anisotropy
of the superconducting energy gap. " " The only
previous attempt to calculate H~ with use of a
realistic model of the band structure was that of
Mattheiss, "who calculated the enhancement of
H~(0) and of the ratio (H~(0))/T, (dH~ldT) r due
to Fermi-velocity anisotropy.

Effects (1)-(5) are all included in the following
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