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Infinitely Many Commensurate Phases in a Simple Ising Modei
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On the basis of systematic low-temperature expansions "to all orders", it is shown that
an infinite sequence of spatially modulated commensurate phases, with wave vectors sj/
(2j+ 1)a (j = 0, 1, 2, ...), occurs in simple, anisotropic Ising models with nn couplings Jp,
J(&0, in between spin-& layers, and competing nnn interlayer couplings J2= —&Jq along
one axis. The free energies, interfacial tensions, and phase boundaries are found for
low T in d & 2 dimens ions.

PACS numbers: 64.60.Cn, 05.50.+q, 75.10.Hk

The structure and behavior of spatially modu-
lated phases of matter have recently attracted
increasing theoretical attention. ' The "sinusoidal"
magnetic order observed in erbium and in other
rare-earth elements provided an early challenge. '
More recently, the complicated phase diagram
of cerium antimonide (CeSb), which exhibits or-
dered magnetic layers with various different
periods commensurate with the underlying lat-
tice, ' has stimulated theoretical attack. ' Also
striking is the phenomenon of "pure stage order-
ing", where, e.g. , in graphite intercalation com-
pounds, one observes' periodic structures of j —1
host layers followed by one intercalant layer,
with j as high as 10; the corresponding phase
diagrams have recently been studied theoretically
by mean-field theory. '

The behavior observed, and that predicted by
phenomenological theories, is often surprisingly
complex (e.g. , devil's staircases"'), but there
have been few definitive results for specific
microscopic models that might serve as testing
points for approximate but more general theories,
or demonstrate unequivocally the range of phase
behavior implicit in a given Hamiltonian —a mat-
ter also of intrinsic interest from the viewpoint
of basic statistical mechanics. In this Letter we
respond to this need by considering what are,
perhaps, the simplest nontrivial models exhibit-
ing periodically ordered phases, namely spin- —,

'

Ising models with nearest-neighbor interactions
augmented by competing next-nearest-neighbor
couplings acting parallel to a single lattice axis. '
We report calculations' which show that as a func-
tion of temperature these models can display an
infinite sequence of distinct spatially modulated
Phases, each characterized by a commensurate

wave vector

q,. = vj /(2j+ 1)a ( j= 1, 2, . . . ),

and having a definite periodic layered structure,
denoted by (2' '3), which means a sequence of

j —1 pairs of lattice layers pointing (predominant-
ly) two "up" and two "down", followed by three
layers all pointing (predominantly) "up", or
"down", to maintain an overall "antiphase" char-
acter, as illustrated for (2'3) in Fig. 1 (a is the
lattice spacing). At low temperatures where our
analysis is valid, ' it yields expressions for the
free energies, and interfacial tensions, which
demonstrate that no other structures occur"
and that the transitions between adjacent phases
are of first order although, as j-, the extent of
each phase decreases and the wave vector ulti-
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FIG. 1. Schematic phase diagram of the anisotropic
next-nearest-neighbor Ising or ANNNI model in the
plane of temperature & and parameter K =J2/Jq, exhibit-
ing the infinite sequence of commensurate, layered anti-
phase states, (2' 8), at low temperatures.
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mately varies quasicontinuously according to

q —q(T, I() -1/ln([K (T) —K] (2)

where ~ = —J,/ J, measures the relative strength
of the competing interaction constants, J, and J„
between spins in nearest- and next-nearest lay-
ers, while 1(„(T)& I( is a smooth function of T
which delimits the (2') =—(2, 2) antiphase state
(see Figs. 1 and 2).

These results are explained in more detail be-
low, where we also present a brief sketch of the
theoretical analysis, ' which is based on a sys-
tematic low-temperature expansion "to all orders"
in powers of uI = exp(-2J, /)'2ET), where J, is the
coupling strength of each spin to its q~ nearest
neighbors in its (d —1)-dimensional layer. Al-
though the anisotropic next-nearest-neighbor
Ising or ANNNI models are very simple, we be-
lieve many of their features will be reflected in
real systems and more realistic models. Further-
more, the last decade in the experimental study
of phase transitions has shown that many seem-
ingly artificial microscopic models can be real-
ized with surprising accuracy in appropriate
physical systems.

!
The ANNNl model with ferromagnetic nn coup-

lings (J„J,&0) and competing antiferromagnetic
couplings (1(&0) is of particular interest"" "
and will be considered here. High-temperature
expansions" for the sc lattice indicate a transi-
tion from paramagnetic to a sinusoidally mag-
netized phase for K) ~~ =0.27. Monte Carlo stud-
ies" confirm the spatially modulated character
of the ordered states for ~) ~~ but show that the
equilibrium wave vector varies strongly with both
T and z. The nature of this variation, however,
cannot be established reliably by Monte Carlo
work, particularly at lower temperatures. On

the other hand, one may prove" that for z & 2

the ground state is purely ferromagnetic, while
for ~) —,

' the ground state is the fourfold-degener-
ate (2, 2) = (2) "antiphase" state of wave vector q
=q„=2m/4a. However, the character of the low-

temperature phases in the vicinity of the border-
line z= —,

' has been a matter of speculation. '"'"
In fact, as illustrated in Fig. 1, the point (T=O,
I(= 2) is a multiphase point' from which, when Ii

&2, spring the infinite number of distinct anti-
phase states (2' '3), which interpolate discretely
between the ferromagnetic and (2, 2) antiphase
states. The jth phase is limited by first-order
transition boundaries, K, ,(T) (K,(T), where,
with K= 2+ (), x =e ' 1, K, = J1/I2ET, the ferro-
(3, 3) boundary is given by

5,(T)K, = —-'u "(1——2m+ —'x2) ——,
' q, uI" ~ '(1 ——2'x2+ —2'x') + —,'(q, + 6)u"'[1+0(x)]+O(uI" ~ ')

while all subsequent boundaries may be described through the recursion relations

I(, , —I(, ~ (~ + 4') [j+ 2 —(j+ 3)tIw' j]uU' uI('+') ' & /K, ,

in which u(T) =(1 —x)2(1+~), U(T) =1-xe 4E1 o, K,A,(T) = uuI'&.
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Note that on heating the system from T=O at
fixed I( & —,', the (2, 2) antiphase state with q = q„
remains locked in up to a finite temperature at
which it "melts" abruptly, essentially by nucleat-
ing widely, but with equally spaced bands of three
"up" and three "down" layers at increasing den-
sity. This corresponds to a solitonlike mechan-
ism' for varying q: Thermodynamically, how-
ever, the melting once started proceeds through
a series of discrete first-order transitions as
illustrated in Fig. 2. The first-order character
of the phase boundaries at low T can also be seen
by calculating the interfacial tension between ad-
3acent phases. For an interface parallel to the
lattice layers on the boundary 1(,(T), this is'

FIG. 2. Variation of the wave vector q for K &. Note
the break in the vertical scale at q/q =0.8 (q =r/2a);
the horizontal scale, set by ch, II(T) ~ (kET/JI)e.s partially schematic [see (4) with x 0 and 2Joqz
= kBT].

Z (T) lp T uI(21'+1)az +2-2 K& (1 +2 K& )2(2 +1) (5)2 B

with corrections of relative order ~'& '. As T
falls, Z,(T) first rises, but then drops to zero in
critical-point fashion when T -0. Since (T= 0,
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x = —,) is a multiphase point of infinite order this is
not so surprising.

The main steps in establishing the above con-
clusions' are the following:

(i) Classification and systematic description of
all possible ground states by the values of an in-
finite set of structural variables l

&
where p la-

bels finite sequences of "up" or "down" ferro-
magnetically ordered layers.

(ii) Expansion of the reduced free energy per
spin, f({l&};T, x) = —F„/NhBT, for all ground
states in powers of the in-layer coupling param-
eter u for general x, by overturning spins in the
ferromagnetically aligned layers: To ensure con-
vergence of this layer-based expansion, d) 2 is
r equir ed.

(iii) Minimization of the free energy, —f({l„}),
over the l& at low (but nonzero) T to determine
the structures of the stable phases: Since the l „
enter the expansion for f({l&})only linearly, this
leads to a linear-programming problem" in the
space 2 of the standard structural variables l „;
the optimal vertices of the appropriate convex
polytope, 6', in this space determine the discrete
stable phases. "

(iv) Solution of the linear-programming problem
in sequential stages, n = 1, 2, 3, ... , correspond-
ing to increasing powers of u & arising from over-
turning successively more spins; full calcula-
tions have been performed for 1, 2, and 3 over-
turned spins (involving analysis of 5, 19, and 96
distinct local configurations). ' However, to eluci-
date the complete sequence of phases and demon-
strate that the ith optimal vertex describes the

periodic state (2' '3), one must calculate the
leading terms in the free-energy differences to
orders ~&""'i for all j.

The interested reader may grasp the ideas via
thy initial details: Since J, &0, all spins in a giv-
en layer are parallel in any ground state. A se-
quence of k adjacent layers oriented the same
way but bordered by oppositely pointing layers de-
fines a k band: For a system of length-L layers,
let lkL be the number of k bands; similarly, let
l» L be the number of k bands which are followed
consecutively by a k' band; likewise for l».. .
etc. By their definition these variables satisfy
linear structural relations such as

etc. , (6)

—J', b[2l, +l, —g (h —4)l ], (7)

with l, =—0. For 6 &0 this is minimal for l, = —,
' and

l» = 0 (h w2) which uniquely describes the state
(2); conversely, for 5&0 the minimum specifies
the ferromagnetic state. The excited states cor-
responding to single overturned spins likewise
yield the first-order free-energy contribution

which reduce the number of variables needed to
describe a ground state to a standard set {l,}.
The inequalities l „~0 (all p) then limit realizable
ground states to a convex polytope, 6', in C.

Now the energy of a spin in any configuration
can be determined, given the orientations of its
nearest and next-nearest axial neighbors. The
ground-state energy can hence be written

&= ——q J ——'J1
0 2 2 0 2 1

~f (I) = w&i{~ + ~l +(2+x + ~)i + + [2+(h 4)x ~+ ~ ]
k~4

(8)

(9)

netic and (3) phases: One may then calculate
the leading term in the interfacial tension, Z,(T)
[see (5)].

At the third stage, two new standard variables,
l 223 and l233 are required; the corresponding
polytope, 6'„has new vertices describing states

which is again linear in the l„. Now combine with (7), eliminate l, by (6), and examine f({l„})for
small 6: Qne sees that any state with /4, l„.. .)0 cannot have minimal free energy. Thus near v = —,

'
the allowed phases arise from ground states containing only 2 bands or 3 bands. Furthermore, to this
order and for a range of 5=0(w'i) a new phase with l, =0 and, hence, l, = 3i becomes stable: This is
just the state (3).

When two spins are overturned the structural varaibles l» —-l», l» —- l, —l» and l33 3 3 l2 l23 are
needed. With l, and l» as standard variables, ' the free-energy expansion reads

f({lp}; T, K) = ao(w, x, b) + (+K,b+w'-b, )l2L+ w" & b„l2, + Q w"'i+ b, (x, b)l p,
n =3 ~(n)

where the b, ~ ——,
' and b23~3 as M, x-0. The

allowed region of the (l„ l») plane is the triangle
6', = ((2), (3), (23)), whose third vertex at l, = l~
=~5 specifies the (2, 3) state which then appears
as a new stable phase between phases (3) and (2)
but with b, —5, = O(w"-L). Likewise one discovers
that no new Phases appear between the ferromag-
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(233), (2233), and (223) but, because' b, =(j+2)
x(1 —x')(1 —x"' )'+' for v=2'3 and b, ~-x' '
x (1 —x'+' )'~'+' for v=2'32' '3, as w'-L-0, only
(223) appears as a stable phase, between (23)
and (2) with 5, —6, =0(u"~). More generally, by
using these results in (9) at stages n= j+ 1 and
n = 2j+ 1, respectively, an inductive argument can
be constructed which yields the remaining con-
clusions.
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A novel technique is described for time-resolved Raman scattering for studying the dy-
namics of nonequilibrium excitations on a picosecond time scale. The generation and the
decay of nonthermal LO phonons in GaAs is measured, and 7' = 7+ 1 ps is obtained for the
relaxation time of the phonon population at 77 K.

PACS numbers: 63.20.Dj, 78.30.Gt

This paper describes a novel technique for
time-resolved spontaneous Raman scattering. As

a first application we investigate the generation
and relaxation of nonequilibrium optical phonons
in a solid. The relaxation of optical phonons oc-
curs on a picosecond time scale and is still in-
adequately understood. The information on the
phonon relaxation processes obtained from the
analysis of the broadening of Raman and infrared

spectra is rather indirect and incomplete. Di-
rect measurements in the time domain, on the
other hand, have provided a detailed picture of
the dephasing of molecular vibrations' and of the
decay of cob,erent optical phonons. ' ' Here we
present, for the first time, a measurement of the
time revolution of nonequilibrium incoherent op-
tical phonons. We observe the generation of op-
tical phonons during the interaction of photoexcit-
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