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A technique is presented which can be used to compute the complex poles of the resol-
vent (defined as resonances) directly by use of a square integrable -basis ~ithout a co
ordinate rotation and without exp/i' thy imposing a boundary condition such as a Siegert
resonant boundary condition. Such a technique is directly applicable to all phenomena
which can be put in the form of a resonance such as photoionization, field ionization, and
electron resonances in atoms and molecules.
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The description of many interesting phenomena,
including field ionization, photoionization (in sec-
ond quantization), electron resonances in atoms
and molecules, and various combinations of these,
can be formulated in a resonance picture. That
is, the observed structure can be described in
terms of the real and imaginary parts (position
and width, respectively) of the complex energy,
E'", of a pole of the scattering matrix. '

A number of methods have been developed to
try to determine these poles of the 8 matrix. Pri-
or to the advent of the complex-coordinate meth-
od they all required an explicit boundary condi-
tion to extract the scattering information. These
techniques could be very difficult to apply to phe-
nomena such as field ionization, where the wave
function goes asymptotically as an exponential
containing fractional powers of the radial coordi-
nate for just the simple case of a hydrogenic sys-
tern in a constant electric field, and to molecular
resonances.

On the other hand, the advantage of the com-
plex-coordinate method' for computing the com-

plex poles of the resolvent operator' directly is
that for a sufficiently large rotation angle, 6, in
the transf ormation

r-r exp(i&),

the resonant wave function ((6), is square inte-
grable. Thus an explicit boundary contion is not
required to extract the complex resonant energy.
The direct application of this method to molecules,
however, results in comple internuclear separa-
tions. Although in principle complex internucle-
are separations are not a theoretical barrier, the
retention of the Born-Oppenheimer approximation
with real internuclear separations often offers a
desirable picture both conceptually and computa-
tionally. '

A number of techniques have been suggested re-
cently for applying the complex-coordinate meth-
od to molecular systems~' while attempting to
retain the concept of real internuclear separa-
tions. These involve external complex scaling or
distorted integration contours. l will. now pre-
sent arguments based on previous complex-coor-
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dinate calculations which indicate that one can
compute directly the complex resonant energies
with a square-integrable basis with the real un-
rotated Hamiltonian and without explicitly impos-
ing a boundary condition.

In all previous complex-coordinate calculations
the basis functions representing the unbound par-
ticle" or, more often, all particles' have been
chosen to be functions of x only, i.e. , independent
of 0. In all of these calculations the complex
resonant eigenvalue is computed for a number of
8 values (this set of eigenvalues being called a 8

trajectory) by use of a variational principle. Al-
though the exact resonant energy is independent
of 8, only regions of quasistability of the approxi-
mate eigenvalue, F.'", with respect to variations
in 0 are obtained. It is assumed that these are
the regions where the variational estimate best
approximates the exact resonant energy.

On the other hand, it is clear that the exact res-
onent wave functions' depend on r and 0 only in
the combination r exp(i8). This symmetry re-
quirement implies that any variational wave func-
tion, ( &, evaluated at 8 = 8, has an exactly equi-
valent wave function yielding exactly the same
complex eigenvalues at 8 = 82 (including 82 = 0)
and that P ' is obtained from g ' by the transfor-
mation r -r exp[i(8, —8,)]. For all previous com-
plex- coordinate calculations the equivalent varia-
tional resonant wave functions at 0, =0 are square
integrable even though the exact resonant wave
functions diverge exponentially. That is, in the
exact wave function for the complex pole, E'",
of the resolvent associated with the resonance,
the asymptotic form of the radial dependence
obeys a Siegert boundary condition, i.e. ,

q' =yr, ' exp(ikr, )S(k)

'exp(ik„r;) exp. (kp';)S(k),

where

E'"=—'k' =-'(k„—ik, )',

S(k) corresponds to a pole of the & matri~, and

q is the wave function for all other particles.
Since none of these previous approximate wave
functions satisfy this boundary condition, explicit
imposition of this boundary condition is unneces-
sary. Instead, the existence of a region in the
complex coordinate plane where the resonant
wave function is square integrable, and the anal-
yticity of the Hamiltonian and the resonant wave

function, imply that one can compute the complex
resonant eigenvalues using the unrotated Hamil-
tonian with a square-integrable basis without ex-
plicitly imposing a Siegert boundary condition.

In these previous calculations 0 is merely play-
ing the role of a nonlinear variational parameter
and the behavior of the 0 trajectories is merely
a result of the use of a variational principle to
locate an isolated complex pole of the resolvent. '
Realizing this I propose the following complex
stabilization method for computing the isolated
complex poles of the resolvent. Using the unro-
tated Hamiltonian, one would simply compute non-
linear parameter trajectories instead of 8 trajec-
tories and stabilize E'" with respect to varia-
tions in the various nonlinear parameters, y, in
the basis set. This stabilization could be per-
formed with each parameter individually, with
groups of parameters, or globally with all pa-
rameters at one time, including a complex scal-
ing which is effectively what previous complex-
coordinate calculations have done, i.e. , y-y
&&exp(ia). In effect a, complex boundary condition
is being implicitly imposed on the wave function
in the form of complex values over some finite
radial range through the variational calculation
itself, as opposed to forcing the wave function to
have some explicit complex asymptotic function-
al form such as a Siegert boundary condition or
explicitly forcing a matching at some boundary as
in R-matrix theory. This results in a considera-
ble simplification computationally, particularly
in the case of phenomena such as field ionization
and electron resonances in molecules where the
boundary conditions can be complicated. Since I
am using the unrotated Hamiltonian directly, I do
not require dilation analyticity explicitly. ' On
the other hand, although dilation analyticity is
probably overly restrictive, the arguments I have
used to justify my method rely on the existence
of the complex-coordinate theorems.

To illustrate how such a technique might be em-
ployed we will consider a model potential prob-
lem which has been previously discussed in the
literature":

H = T + 7 5x' exp(-. r)

The energy of the resonance is known to be
3.426 39 —0.0127 75' a.u. from numerical integra-
tion of the Schrodinger equation. The generali-
zBtion to the n-particle case is straightforward. ' '"

Although many choices for the form of the vari-
ational wave function are conceivable I have used

1488



VOLUME 44, NUMBER 23 PHYSICAL REVIEW LETTERS 9 JUNE 1980

the following:

O', = Qc,y, (P, ,v)+exp(ikr)(c„+, exp(- er)+c„+,exp[-(o+ )x]j,

where P, , a, e, and k are all real nonlinear pa-
rameters with respect to which E'" is to be sta-
bilized, and the y,. are Slater-type orbitals. If &

is a small parameter, the explicitly complex ba-
sis functions contribute in the region around ~

The two most important properties of the
complex basis functions are that they be square
integrable and that a similarity transformation
which could transform them to a real basis not
exist.

Initially a variational wave function with n = 10
was used and detailed calculations were performed
in which E"' was stabilized with respect to all
nonlinear parameters individually except n and e
+& which were stabilized together. The maximum
for the most extended basis function in this wave
function occurred around 4.0 a.u. and the reso-
nant eigenvalue obtained was 3.426 37 —0.012 738i.
Subsequently nine and then nineteen additional
Slater orbitals were added to this core function.
In each case all nonlinear parameters for the
added Slater orbitals were stabilized together.
In addition k and the pair o.'+e were restabilized.
The locations of the maxima of the most extended
basis functions in each of these cases were 6.7
and 10.6 a.u. , respectively, while the resonant
eigenvalues obtained were 3.426 39- 0.012 779i
and 3.426 39- 0.012 774i a.u. , respectively.

Table I illustrates a typical variation of the
complex resonant eigenvalue with respect to vari-
ation of a nonlinear parameter which in this case
is k. ~E~ and ~E, are the changes in the real and

imaginary parts of the complex eigenvalue for an
incremental change in k. The eigenvalue of the
italicized value of k is 3.42639 —0.012779i.

Additional details concerning the calculation
will be elaborated later. " However, several
points should be noted. First the complex eigen-
values are a multiparameter function of the non-
linear orbital parameters. As such there is no
reason to expect that there is necessarily a sin-
gle unique set of "optimized values" for the non-
linear parameters. This is well known in large
conf iguration-interaction calculations for bound
states. In these calculations we required simul-
taneous stability of both the real and imaginary
parts of the resonant eigenvalue with respect to
variations in the nonlinear parameters. Secondly,
the magnitude of the variation of E'" with respect
to variation of any particular parameter will, of
course, depend on the importance of that basis
function to the representation of the resonant
wave function. This can be estimated by comput-
ing the structure projections, S,, for each con-
figuration, X;, where S, is defined as

1.8270

1.9575

2.0880

2.2185

z.a490

2.4795

2.6100

2.7405

2.8710

+ 7.4(-7)

+1.5(-6)

+ s.9(—7)

-4.o(-s)

-7.2(-7)

-9.6(-7)

-6.5(—7)

-6.2(-s)

+4.3(-6)

+2.6(-6)

+1.3(-6)

+2.8(-7)

—6.O(—7)

-1.4(-6)

-2.3(-6)

-3.3(-6)

TABLE I. Variation of resonant eignevalue with re-
spect to & for 21-term wave function.

In conclusion, I have shown that previous com-
plex- coordinate calculations indicate that one
need not describe the resonant wave function ex-
actly asymptotically. In fact, one need not exPli-
citly impose a boundary condition at all. This
represents a considerable advantage over the Sie-
gert, Kapur-Peierls, and R-matrix techniques
since neither the explicit form nor the explicit lo-
cation of the boundary condition need be denoted.
In addition I have shown that one need not per-
form a coordinate rotation as in the complex-co-
ordinate method even though one still uses a
square-integrable basis. This method is thus di-
rectly applicable to molecular systems without
the questions of complex internuclear separations,
distorted integration contours, external complex
scaling, or explicit Siegert boundary conditions
ever arising. Successful preliminary calculations
on atomic systems" and field ionization' have al-
so been performed with this method.
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By use of neutron correlation spectroscopy a soft mode has been found for the Rayleigh-
Benard instability with frequency ~ - (R/R~ —1) ', R denoting the Rayleigh number. The
power spectrum shows periodic states split into a narrow band, and some low, perhaps
solitary, states. Guided by the autocorrelation function the main features are modeled
by phase modulation of the soft mode by the slower modes. A connection is made to the
central-mode problem in structural phase transitions.
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Recently critical fluctuations near the convec-
tive instability in para-azoxyanisole (PAA) were
reported. ' The fluctuations manifested them-
selves as excursions from the time average of
the intensity of scattered neutrons. In this paper
we report on the dynamics of these fluctuations.
For the experiment we used a slab-type alumi-
num vessel of dimensions 38& 38&& 5 mm' filled
with fully deuterated PAA. Of the long dimen-
sions one is vertical; the other is horizontal and
along the common direction of the scattering vec-
tor and a magnetic field. The temperature at
midheight of the aluminum side walls was kept
constant at 121'C. PAA is then a nematic liquid
crystal susceptible to alignment by a magnetic
field. A vertical temperature difference b T is
obtained by setting the difference of the power
fed to the heating elements at the top and bottom
of the vessel; positive AT denotes a warmer bot-

tom than top. Convection sets in at a predictable
value AT„ the Rayleigh-Benard instability point. '
b,T, is proportional to R„ the critical value of
the dimensionless Rayleigh number R. In iso-
tropic liquids R =Pgl, 'AT(vw) '. Here P is coeffi-
cient of the thermal expansion, g the gravitation-
al acceleration, l the vertical layer thickness, v

the kinematic viscosity, and ~ the heat diffusivity.
For our cell only one convection roll is predict-
ed' and observed, but higher harmonics develop
gradually at increasing R.' Neutron scattering
can explore these phenomena in nematic liquid
crystals. 4 This method rests on the coupling be-
tween molecular orientation and flow, and on the
anisotropic scattering power of the molecules.
In the absence of flow the molecules are aligned
horizontally by the field. The convection makes
molecules tilt towards the vertical direction,
which in turn gives increased neutron intensity
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