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The behavior of a large number of coherently pumped three-level systems coupled to
two resonant cavity modes at the two respective intermediate frequencies is shown to be
qualitatively different from conventional laser-type behavior. The existence of three
steady states and the dependence of their stability on the operating conditions allows the
production of steady, modulated, or pulsed excitation of both modes.

PACS numbers: 42.50.+q, 32.80.Kf, 42.55.Bi

Coherent pumping of lasers (by other lasers)
has become common practice, and pump lasers
are available in a wide range of frequencies. The
operation of a three-level laser depends both on
induced emission at one intermediate frequency
and on incoherent relaxation at the other. These
two processes may be regarded as cooperative
and noncooperative relaxation, respectively.
is the present purpose to analyze a novel and in-
teresting type of possible behavior —qualitatively
different from conventional laser-type behavior—in which the three-level atomic systems (here-
after referred to as "molecules") undergo cooper-
ative relaxation at both intermediate frequencies.
This may be accomplished by letting molecules
for which all three transitions couple to the elec-
tromagnetic field interact with iwo (lossy) cavity
modes tuned to the two respective intermediate
frequencies. Labeling the three molecular ener-
gy levels in ascending order by@~„ i=1, 2, 3,
we consider a model in which N identical mole-
cules are coupled to two modes with respective
frequencies w», ~», and pumped at frequency
~», where to„= l&o,. —co, l. While such coupling,
in accordance with well-known selection rules,
may be too weak in most atomic systems to pro-
duce the present effects, there exist atoms and
molecules for which forbidden lines or overtones
are sufficiently strong (such as the OCS mole-
cule') or for which two-photon pumping may be
possible. The present discussion is not neces-
sarily restricted to optical or infrared frequen-
cies but is also applicable to microwave frequen-
cies.

In order to exhibit most simply the new feature,

we introduce the idealizations that the coupling
strength between molecule and mode depends only
on the mode, and that transitions other than those
due to induced emission are negligible. The for-
mer is used widely in analyses of cooperative
phenomena, ' and the latter will be discussed fur-
ther. We use a formalism which is especially
suitable for the analysis of cooperative phenome-
na and can be read directly both quantum mechan-
ically and classically. " The atomic equations
of motion, in the rotating-wave approximation,
are given in this formalism by

A, —toA, —ty,P„A„
y,P2s A, —ty, P,a„,

3= —~Ai- ty.stl p.s

Briefly, the A's and B's are the variables that
describe the collection of molecules and the cavi-
ty fields, respectively, and are related to a;
(a, t), the annihilation (creation) operator of
atoms in the ith level, and to b, , (b„t), annihila-
tion (creation) operators of photons in the ij mode,
respectively, by a, =A;exp(- i~, t), b,„=B,„
&& exp(- i&a»t); &o refers to the pump field, 2' be-
ing the Rabi frequency of the (l, 3) pair of levels,
and the y's are real coupling constants. ' The
equations are consistent with the normalization
QA,. tA, =N. Since our interest lies in macro-
scopic phenomena, with N large, the classical
description is a good approximation under most
conditions, ' and will be used henceforth. We con-
sider only the case of sufficiently damped cavity
modes so that the fields follow the respective
resonant polarizations adiabatically, as expressed
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by'8, ,= —i(y;,/$, „)A,tA» where 2$,, is the energy
relaxation constant of the jk mode.

Eliminating the field from the molecular equa-
tions of motion, and setting x,. =A, /N' . ', v =at,
c,, =Ny, ,/$, ,~, one obtains

I 12+3+

3
—C 1.2

x, --x, -c„lx,l x„
the prime indicating differentation with respect
to 7. Clearly, the phase of x, is constant, and is
given by its initial value. Elimination of lx21

yields

x, '=x, +c„x,(1-1x I' —Ix I'),

x, ' =-x, -c„x,(1-1x,l'- I .I').
The most interesting solutions, from a physical
viewpoint, are included in those for real x, and

x» for the following reasons. If x,(0) and x,(0)
are real, x,(r) and x,(r) will be real. Either x,(0)
or x,(0) can be chosen real, since only phase dif-
ferences are physically significant. If x,(~) or
x,(i) vanishes, the nonvanishing variable may be
redefined to be real, and both variables will con-
tinue to be real henceforth. For steady states,
choosing one variable to be real makes the other
real, and the same applies if only one derivative
vanishes at any time. We will confine our atten-
tion, therefore, to real values of x, and x3. For
notational simplicity, we seta, =x, x3=y, c]2

c] cp3 c2 and obtain, as equations of motion

x' =y +c,x(1-x'-y'),
y' = —x —czy(]. -x -y )

which, in polar coordinates (with x =r cos8, y
=r sin8) become

r' = r (1 —r') (c, cos'8 —c, sin'8),

8I = 1 ——', (c, +c,)(1-r') sin28.

There exist two steady-state solutions, which
we label Z and 8, respectively, Z being the solu-
tion r = 0, and S being the solution r' = 1 —(c,c,) ' ',
tan8 = —(c,/c, )"~', with S existing only for c,c,
& 1. There exists another solution with some
steady-state properties, which we label p: r =1,
0= —v. For convenience, all three will be re-
ferred to as steady states. (In the terminology of
nonlinear equations, ' Z and S are singular points,
and P is a limiting cycle. ) The stability condition
of the steady states (in the sense of "asymptotic
orbital stability"') are as follows: for Z, c,/c,

Cp,
'

FIG. 1. Regions of stability in the c, , c, plane for
the three steady-state solutions.

& 1 and c,c, & 1; for S, c,/c, & 1 (and c,c, & 1, of
course); for P, c,/c, &1. The stability regions in
the c] c2 plane are illustrated in Fig. 1.' The only
steady state in which the cavity modes are excited
is S. In Z, the total population is in the middle
level, while in P, all molecules undergo a Rabi
oscillation between first and third levels.

The most interesting behavior is exhibited by
the time-dependent solutions. For c, = c,= c, ana-
lytic expressions for the trajectories correspond-
ing to these solutions are given by

1 —r'=K exp(cr' sin28)

where K is a constant of integration determined
by the initial conditions. This equation describes
a family of closed curves as shown schematically
in Fig. 2, each curve corresponding to a different
K For cy & c2 p

one can see from the polar- coor-
dinate form of the equations of motion that the
trajectory representing the solution will spiral
in or spiral out (if the initial state is not a steady
state), depending on whether c, & c, or c, & c „ap-
proaching the stable steady state while following
roughly the outline of the periodic trajectories of
Fig. 2. Two computer graphs of such solutions
are shown in Fig. 3. The field energy in the (1,2)
cavity is given by K&u»(y»/$»)'N'x'(I —r') and
that in the (2, 3) cavity by 5&@»(y»/$»)'N'y'(1 —r'),
so that the fields are modulated (with opposite
phase, when the trajectory spirals around the ori-
gin).

A sudden change in x, that is, in the pump
strength, for c] (c2, which produces a crossing
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FIG. 2. Trajectories in the x-y plane for c& = c2 = c.
(a) c = 1.5. (b) c = 0.5. Each closed curve represents
the solution for a given x(0), y (0) (or a given value of
&). The outer circle is solution P, the center is
solution Z, and the two off-center points in (a) are
solution S. Dotted curve is separatrix.

of the curve c,c,= 1 (see Fig. 1), will produce a
transition from S to Z (a modulated decay of the
fields) for an increase in pump strength, and a
transition from Z to S (a modulated rise of the
field) for a decrease in pump strength. The S-Z
transition is caused by the disappearance of S,
while the Z-S transition is caused by an (as-
sumed) arbitrarily small. perturbation of the (un-
stabLe) Z state. A particularly interesting effect
is the occurrence of a modulated pulse in both
modes as a result of a Z —P transition, when

stability is shifted from Z to P or vice versa by
crossing the line c, = c, (a line of "bifurcation
points"'). Such a transition can be produced by a
change in g» or $», the cavity loss, conceivably
by electronic methods. The Z-P transition is
illustrated in Fig. 3b (for a perturbed Z); the P
-Z transition is a spiraling in from r =1 —c to r
=0. Note that a period of revolution along the
spiral is approximately a Rabi period n ~ ', and

the pitch of the spiral (near a given r) varies as
cy c2 A P -S transition is illustrated in Fig.
Sa. Several other types of time dependent solu-
tions will be discussed elsewhere. "

Atomic relaxation and spontaneous emission
have been ignored. These will produce the per-
turbations of the unstable steady states that re-
sult in some of the transient pulses described
above, and perturbations of the stable steady
states that are of little qualitative significance
for sufficiently strong pumping. " One may rea-
sonably expect that after the begining of a tran-
sient mode excitation the induced emission will
become dominant and other relaxation effects rel-
atively negligible for sufficiently short pulses.

An insight into the fundamental difference be-
tween the present phenomena and conventional la-
ser-type effects is furnished by the following char-

FIG. 3. Trajectories in the x-y plane for c& & c& .
(a) c& = 1.4, c2 = 1.6, x(0) = 0.95, y (0) = 0. (b) c& = 0.7,
c~ = 0.4, x(0) = 0.05, y (0) = 0.

acteristi, cs of the present system: 1) If a coher-
ently oscillating dipole moment exists with re-
spect to one pair of intermediate levels, it must
also exist with respect to the other pair, so that
both modes must oscillate together. 2) Since the
main relaxation effect is determined by the mode

damping, it can be controlled simply, allowing
the shift of stability from one steady state to an-
other and the production of the associated transi-
tion pulses. 3) Quasisteady-state oscillation can
occur (for c, = c,) in which the energy in the two
modes undergoes modulation with opposite phase
for constant pump field. '
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The similarity of Fjg. 1 to a phase diagram is ob-
vious. If ~x~) is considered (formally) to be the "order
parameter", then the transition S Z corresponds

to a second-order phase transition, while S—P and
Z —P correspond to first-order phase transitions.
Nonequilibrium phase transitions involving cooperative
atomic behavior of two-level systems are discussed
by D. F. Walls, P. D. Drummond, S. S. Hassan, and
H. J. Carmichae1, Prog Th. eor. Phys. {Japan) S. uppl.
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"The apparen~eemingly puzzling stability of P and
S in the limit 0 is due to the fact that relaxation in
the (1,3) transition has been ignored. The present
model is applicable only when the effect of this relaxa-
tion is sma11 compared to that of the pump. Otherwise,
sufficiently small leads to a fourth stable state, to
be described in detail elsewhere, which is irrelevant
to the effects presently considered. %ith a more com-
plex model (beyond the scope of the present discussion),
it can be shown that this state is a weakly excited steady
state of two-level systems involving only levels 1 and
3.

'~The idealizations and approximations used may
limit the time during which the present theory is valid.
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A small-signal theory is given for gain in a free-electron laser comprising a cold
relativistic eIectron beam in a helical periodic transverse, and a strong uniform axial,
magnetic field. Exact finite-amplitude, steady-state helical orbits are included. If
perturbed, these orbits oscillate about equilibrium, so that substantial gain enhancement
can occur if the electromagnetic perturbations resonate with these oscillations. This
gain enhancement need not be at the cost of frequency upshift.

PACS numbers: 42.55.-f, 41.70.+t, 41.80.Dd

Intensive activity is underway to exploit the
gain properties of a relativistic electron beam
undulating in a periodic transverse magnetic field.
Such free-electron laser (FEL) configurations
have provided oscillation at 3.4 (Ref. 1) and 400
pm, ' and amplification at 10.6 pm. ' Theory has
advanced apace, ' and elaborate schemes have
been proposed for obtaining high FEL efficiency. '
A factor which limits the practical application of
this interaction at wavelengths shorter than per-
haps a few microns is the rapid decrease in
small-signal gain G, a,s the electron energy in-
creases. This is shown explicitly in the well-

known result' for G, in the single-particle limit
(i.e., when collective effects are negligible)

G, = (~, ]/k, c)'(k,f,/2y)'F (8).

Here ~~ and y are the beam plasma frequency
Ne'/me, and normalized energy W/mc', k, and $
are the helical transverse magnetic field wave
number 2m/I and normalized strength eB~/mck„
I. is the interaction length, and E'(8) = (d/d8)(sin8/
8)' is the line-shape factor, with 8 = [kp3O —~(l
-v»/c)] (I/2c), where v,o is the unperturbed elec-
tron axial velocity. The peak gain occurs at t9

=1.3, where E'(8) =0.54. For example, with y
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