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It is shown, on the basis of an SU(N)-symmetric model, that the large-N quantum

theory can be described in terms of the classical equation of motion supplemented by
some special boundary conditions. It is then exemplifyied how the appropriate classical
solutions determine the sum of planar diagrams.
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The large-N behavior of the Yang-Mills gauge
theory is given by the sum of all planar dia-
grams. ' ' In the collective-field approach which
was developed recently "one in general achieves
the summation of large-N graphs by a single sta-
tionary point of an effective Hamiltonian. The
problem is then to solve the effective field equa-
tions in explicit terms. This can be done in some
simpler models but for the theory of interest, the
Yang-Mills gauge theory, the problem looks rath-
er complex.

However, in a related work of Ref. 6 it was
pointed out in the framework of linear o models
that the large-N vacuum can be alternatively ob-
tained as a special time-dependent classical solu-
tion of the original field equations. In general we
have established in Ref. 7 that for any N-compo-
nent vector model one can understand the effec-
tive equations as simply the classical field equa-
tions with special boundary conditions.

Here, we present the crucial generalization of
this semiclassical approach to theories which
have planar diagrams. As the prototype model
we consider the U(N)-symmetric quantum theory
of Ref. 3 with the Lagrangian

I.= —,'Tr(M') —v(M ),

where the basic degrees of freedom are given by
the NxN Hermitian matrix M(t). The interaction
potential v(lVc) is assumed to be invariant under
the global SU(N) symmetry transformation

I -M' =VMV~.

This implies the conservation of the "angular mo-
mentum" matrix

J —= i[M, M]: dJ/dt =0.

Let us now state in simple terms our main result.

%e shall show that the large-N behavior of the
quantum singlet sector is directly determined by
the classical equations of motion

d'M(t)/dt'+sv~)/sM =0

supplemented by the constraints

J, =h(1 —6, ).

These constraints supply the nontrivial boundary
conditions and signify (through k) the quantum
nature of the problem.

Before we proceed to our argument let us re-
cord the basics of the large-N effective Hamil-
tonian. ' For studying the singlet subspace

(6)

of the quantum theory one reformulates the Ham-
iltonian in terms of the most general set of com-
muting SU(N)-invariant operators

y(x) = f (dk/2m) exp(ikx) Tr[exp(-ikM)] (7)

and the conjugate variables v(x) = (k/i )8/asap(x).
This leads to the effective Hamiltonian

H2fg =
JI dx ~ ~cp1T „+ p(x) P

+ V[y], (6)

where V[y] =v(M ) represents the original poten-
tial while the h' term

h' "
)

2

Vo
———dx y(x) P

2 $ —x

is of purely quantum mechanical origin. Now,
because of the constraint fdx q (x) =N there fol-
lows the fact that the large-N limit of quantum
theory is given by the stationary points of the
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effective Hamiltonian. The h' term V@ plays a
very important role in this limit and the complex-
ity of the effective equations comes essentially
from this term.

We now begin with the consideration of the clas-
sical equations of motion. Since we shall focus
our attention on the invariants let us use the "an-
gular" decomposition":

served quantity J as

J,~ =c(1-5,~),

then Q„Q„becomes

c'[&.,—2K, U,.')Q, U, ,)&.,
+I +,U.,')Q, U, ,)I'].

Furthermore, Eq. (18) can be written as

(18)

(19)

(10)

where U(t) is a unitary matrix with UtU = 1 and

A. (t) denotes the SU(N)-invariant diagonal part

b, [U U, ~). =' [~. —@ U., )~ U ~ )] (20)

which is an off-diagonal matrix and then there
foQows the nontrivial identity

~ =diag[a„X„.. . , X„].
EaU a )Ea'Ua'o) = 1 + = 1 2 (21)

The classical equations of motion given by (4)
then become

U((d/dt)(i+ [U'U, x])

+[UtU, j +[URDU, y]]'tUt+a~/aM =0. (12)

The diagonal part of this equation can. be written
in the form

d' "-0 13dt', (t) ZQ. ,Q..aX (X X)"aX =, ( )
a&b k a b

where we have defined

Q(t) =t[&, [U'U, &]).

This matrix represents an invariant under U(N)
symmetry transformations. An alternative way
to derive the above equations of motion for the
invariants Xk is to consider the Hamiltonian H
= —,

' Tr(M')+v (M), and write it in the form

N
~a=—Qi, '+Q " ",+v(x)

2~ i ~(~(g~-gb) (15)

and show that the Poisson bracket of Q„with
X, 's va,nishes.

An obvious thing about Eqs. (12) and (13) is that
the angular terms do not decouple. But from our
earlier experience with the large-X limit we ex-
pect to have separate equations for the invariants
X and also that all ~„'s become equally important.
This could be achieved if we can introduce a con-
straint

This identity then assures that our constraint
(16) can indeed be satisfied. Concerning these
arguments we mention that they are similar in
spirit to the ones used in demonstrating the com-
plete integrability of the N-body Calogero sys-
tem. ' "

Let us now show that the above classical equa-
tions with the constraints coincide in form with
the effective large-N equations. For this pur-
pose use the collective fields which according to
the defining equation ( f) read

y (x) = g 5(x -X,(t)), (22a)

+~ .» = + 5(x —~«)pa ~

k =1
(22b)

One can easily show that the Poisson brackets

(y(x), v, (y)) = a, 5(x —y) (23)

are correctly satisfied. Then to perform the
comparison note that the first term in the class-
ical Hamiltonian equals

—,'g,p„'=-,'ld q~ „' (24)

which is the first term in the effective Hamilton-
ian (8). More importantly, the second, angular
term in Eq. (15) can be written as

1
l'aug = c' E

( )2

Q,qQ~, =c'(1 —&„). C 1 2
=

2 ~ .&„(.„-..)
(25)

However, this quantity is not a constant of motion
which can be easily seen since

Q(t) = U'(t) «(t).
Nevertheless, we can show that the constraint
(16) is consistent. Namely, if we fix the con-

This rather nontrivial looking identity is easily
established by the method of induction. Next,
writing this in terms of the collective field y(x)
and identifying c =5 we obtain the important con-
clusion: The angular potential (25) coincides
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exactly with the R' quantum potential of Eq. (9):

(26)

We see therefore that the large-N effective Hamil-
tonian is nothing but a constrained classical
Hamiltonian. This identification concludes our
demonstration that the classical equations of mo-
tion with special boundary conditions determine
directly the quantum large-N behavior.

I.et us now exemplify how one can use the ap-
propriate classical solutions to sum planar dia-
grams. We consider for example the potential

,'x„(2N—-x„2)'~'=n~, ~=0, ~1, . .. ,

and by

N sin-'[x. /(2N) ~'] = m ~+ ~/2,

(sea)

large-N asymptotic form

H ~(x) -cos(N sin '[x/(2N)'t']

xcos[~(2N x )~;N~], (35)

where we have assumed x = O(N '). Consequently
for large N (and, for example, N odd) the zeros
are explicitly given by

V(M) = —,
' Tr(M') . (27) m=o, ~i, . . . , (s6b)

The classical equations now read

M+M=0

and the general solution is given by

M(t ) = Xo cost+ 0 sing.

(28)

(29)

(37)

giving the result

Now one can easily show that the sum (33) (with
5=1) converts to an integral

y, (x) = ~ 'fd-A„(2N . A'—)'~'. 5(x —X„),

Here we have defined A'=A, (0) and taken U(0) = 1.
The angular momentum constraint given by Eq.
(18) determines the form of 0:

(30)

Suppose now for example that one is interested in
the large-N ground state. In the above framework
it is given by the lowest-energy solution which
obviously corresponds to static A.'s so that p = 0
and A,

' obeys the equation

(S1)

( )
~ '(2N-x')'~', x'(2N,

(38)0, x') 2N.

This is precisely the stationary collective field
obtained in the effective-Hamiltonian approach in
Ref. [5].

As the second exercise we compute directly
the ground-state energy. It is given by the class-
ical Hamiltonian (15) and for the above solution

2

(39)

To evaluate this sum directly we employ two iden-
tities concerning the zeros of Hermite polynomi-
als see Ref. 9. The first states that

We now use the results of Calogero' which state
that A.„'s are given by the zeros of Nth-order
Hermite polynomial

k &i

while the second says that the matrix

H g(S ~
A. ~ ) = 0, k = 1, 2, . .. , N . (32) (40)

This then completely specifies the classical solu-
tion determining the large-N vacuum.

In order to compare with earlier works let us
compute for example the collective field

has integer eigenvalues given by n=0, 1, 2, ... , Ã
—I. In both statements we have scaled out S.
Using these identities we can easily show that

N 1

y, (x) = p 5(x —Z, '). (33)
z= Q (nn)

n~0

Since we need explicitly the zeros of the Hermite
polynomial we use the integral representation

H„(x) =2 "~ '~'exp(x') f dtg" exp(-g')

x cos(2x t —N/2~) (34)

and the method of stationary phase to derive the

This form is the same (apart from lower-order
terms) as the quantum ground-state energy of
Brd'zin et al.'

In conclusion let us summarize the basic facts
of the semiclassical approach to large-N dia-
grams. On the basis of our earlier studies and
the present investigation we have the following
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general conclusion: The large-N behavior of the
quantum theory is directly determined by the
classical equations of motion supplemented with
some special constraints on the generators of the
symmetry group. This statement is valid irre-
spective of whether the theory under considera-
tion involves only bubble diagrams or the more
complex planar diagrams.

The foregoing conclusion may seem surprising.
Indeed there are statements in the literature that
the classical solutions do not seem to be relevant
in the large-N limit. Obviously, not only do we
sharply disagree with such statements but more-
over in the present framework we show that ap-
propriate classical solutions in fact directly de-
termine the large-N quantum theory.

The generalization of the above phenomenon to
Yang-Mills gauge theory would be as follows.
The quantum theory is given by the Hamiltonian

H= f Tr[—,'E,'+ ,'F, , '] -dx (42)

and the requirement of gauge invariance,

G(x)~)=0; ("(x)=D E(x). (43)

We then expect that the large-N behavior and the
sum of all planar diagrams is given by the class-
ical solutions of Yang-Mills equations with a spe-

cial constraint G= p representing an effective
source. We have checked that this is true for the
simple one-plaquette Yang-Mills theory and be-
lieve that it holds for the full three-dimensional
theory.
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Cross sections for true absorption by nuclei (Al, Ti, Cu, Sn, Au) of pions (& ) in the en-

ergy range from 20 to 280 MeV were measured by a new method of detecting nuclear p
rays following the reaction. The incident-energy dependence of the cross sections in the

low-energy region (T„&50 MeV) was well reproduced by an optical-model calculation,
while the higher-energy part seems to indicate complex mechanisms of pion absorption.

PACS numbers: 25.80.+f

The pion absorption process is essentially an
"exclusive" reaction in which no pion is left in

the final state, so that its study provides unique
information on pion-nucleus interactions. Despite
extensive studies at meson factories, very few

data have been available on the pion (true) absorp-
tion cross section. "We have measured the
cross sections with a new method by detecting y
rays from residual nuclei following the pion ab-
sorption. In this Letter we shall first describe

the principle and practical problems of the meth-

od, . and then present experimental data.
A nucleus is excited after pion absorption and

emits several nucleons until the nuclear excita-
tion energy becomes less than the binding energy
of nucleons. The nucleon emission is followed

by low-energy y-ray emissions from the excited
residual nucleus with essentially the same mech-
anism as that well studied in the low-energy (par-
ticle, xn) reactions. ' In the present method, we

1446 1980 The American Physical Society


