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if the cross sections are divided by the degenera-
cies of the product states, the probability per
state of producing a 52D, /, atom in comparison to
a 52D, ;, becomes as great as a factor of 2.7 larg-
er for the peaks in Fig. 2.

The surprising detail found with this new multi-
photon technique in the cross sections for the
photolysis of Cs, attests to the importance of ex-
perimental measurements of these quantities. It
is clear that the highly selective photodissocia-
tion of Cs, into 5D, ,, atoms for wavelengths be-
tween 470 and 485 nm could not have been antici-
pated from existing theoretical curves. It ap-
pears that the technique introduced here holds
the promise of contributing substantially toward
the detailed characterization of the repulsive
states of simple molecules that are becoming of
critical interest and importance in a variety of
applications.
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lgypplementary data were obtained by exciting the
52D /5> 25%F;/,, 1/, transition with the delayed pulse.
As the detection efficiency of the product populations
was expected to be proportional to »~? for zn =20,
where n was the principal quantum number of the
Rydberg state, the ionization signals obtained from
this transition were multiplied by (25/20)%. They
were then included in the set from which the relative
cross sections shown in Fig. 2 were taken.
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Disparate-mass neutral gases are here predicted to support two different forced=
sound modes at moderately high frequencies, a fast and a slow wave. Specific pre-
dictions are given for mixtures of xenon and helium.

Forced sound propagation in gases may be
studied by considering small disturbances from
absolute equilibrium of the form exp[i(kx - wt)],
where the frequency w is constrained to be real
and positive, The dispersion relation which one
subsequently obtains for the complex wave num-

ber % =k(w) in general has several roots, Usually,

one root of the equation will correspond to sound
propagation in the +x direction. That root is
identified by its low-frequency behavior: As w
-0, Im(k) (proportional to the absorption coeffi-
cient) goes to zero, and Re(k) (proportional to
the dispersion) goes to a positive known constant.
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An exception to this simple situation can arise,
however. Consider the Navier-Stokes descrip-
tion of a simple monatomic gas. The relevant
equations may be written in linearized, nondi-
mensional form, for deviations from equilibrium
of the form expi(kx — wt), as follows:
Conservation equations,

n=2U (number-density deviation), (1a)
U=z(n+T+P) (flow velocity), (1p)
3T=2n+2zq (temperature deviation); (1c)
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constitutive equations
(1d)
(1e)

P=-(iwz)mU (pressure deviator),
q=-(iwz)IT (heat flux);

the reference standards are equilibrium values

of number density (n,), pressure (p,), tempera-
ture (7T,), and speed ¢ = (po/po)l/z, where p, is

the equilibrium mass density. The reduced wave-
number z is

z=kc/w. (2)
Here

P={P},/po, T=a/poc,
where {P} is the symmetric traceless part of the
pressure tensor; and other small quantities, e.g.,

n=ny[1+7 expi(kx— wt)],

are also denoted by tildes; finally, all tildes have
been omitted from Eqs. (1a)-(1le). The nondi-
mensional coefficients of viscosity (m) and ther-
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FIG. 1. (a) Dispersion and (b) absorption in a pure
monatomic gas at critical viscosity m, =-125. For w<w,,
the solid curve shows the contribution of the sound root,
the dashed curve that of the other root, of the disper-
sion relation. For w>w,, both curves describe “sound
propagation”. Units of w are chosen so thatl=1.

mal conductivity () are related to their usual,
dimensional forms (u, A, respectively) by

I=MTowo/poc?), m = p(dwy/3p,) , (3)

where w, is an arbitrary reference frequency,
hereafter chosen so that /=1,

The dispersion relation following from Egs.
(1a)-(1e) is a quadratic in y=22, of the form

ay?+by+3=0, (4)
where

b=-54+(2iwl +3iwm), a=-2iwl -2w?ilm, (5)
Usually, one root of Eq. (4) corresponds to sound

propagation in the +x direction; this root may be
identified by the behavior

Re[(%)¥2z] = Dispersion (Vo,/V) = 1,

w—>0

Im[(%)"/*2] = Absorption (a) =, 0,

(6)

for propagation in the +x direction, where V, is
the equilibrium speed of sound [V,=(%)2c].
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FIG. 2. (a) Dispersion and (b) absorption for a pure
monatomic gas of viscosity m =0.167>m_ and m =0.100
<m,. Solid and dashed curves refer to the sound mode
and the interfering mode, respectively. Units of w as
in Fig. 1.
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However, an exception to this simple situation
occurs when

25
8

w=w,=%, m=m=%; ()

at these critical values of the parameters w and
m (with [ set equal to unity), the two roots of

Eq. (4) coincide. Figure 1 shows dispersion

and absorption in forced sound as w varies, for
m=m,. When w>w,, it is evident that two propa-
gating modes are predicted, of comparable ab-
sorption but very different sound speeds.!

Equally interesting, for m near m, the behavior
of the sound root shows clear signs of the inter-
ference of the second root, and indeed cannot be
understood without reference to the latter. Fig-
ure 2 shows dispersion and absorption curves for
values of m somewhat higher, and somewhat low-
er, than critical. One sees that the sound root
changes its behavior qualitatively as m goes
through the critical value. It therefore seems
physically reasonable to call the general effect,
for m in the neighbovhood of m,, and w 2 w,,
double sound propagation.

It happens that for a pure monatomic gas, dou-
ble sound propagation does not correspond to an
observable effect because it occurs only for an
artificially low viscosity.? For disparate-mass
gas mixtures, however, double sound propagation
is here predicted (apparently for the first time)
as a realizable physical effect.®

A (binary) disparate-mass gas mixture is one
in which the molecules of one component are very
much lighter than those of the other (m,<m,). It
has been shown?™® that, because of the slow ex-
change of kinetic energy between species of very
different molecular masses, there are circum-
stances in which the usual equations of hydrody-
namics do not give a correct description of such
mixtures even though they correctly describe
other more ordinary gases in the same circum-
stances. For forced sound propagation in dispa-
rate-mass gases, for instance, the equations of
hydrodynamics are inapplicable when frequencies
approach values of the order of (m,/m,)*? of fre-
quencies at which the hydrodynamic equations are
usually supposed to become invalid (the latter fre-
quency being of order V,/L, where V, is the
equilibrium speed of sound and L a mean free
path). Correct equations, which necessarily in-
volve separate species temperatures in part of
the continuum regime w «V,/L, have been deve-
loped independently by several authors.?”!! Pre-
sent calculations are based upon the work of
Goebel, Harris, and Johnson,®~8 12

144

The relevant two-temperature continuum equa-
tions for a disparate-mass gas are Egs. (24)-(31)
of Ref. 7. The linearized nondimensional form
of these equations, for small deviations from
equilibrium of the form expli(kx — wt)], is as
follows:

Conservation equations,

=z -W) } (number density deviations),(aa)
ny,=2U0 (8b)
U=z[33;x;n;+T +P] (flow velocity) , (8c)
T=($)2, [xini +2q, ]
(temperature deviation) ; (8d)
Constitutive equations
W = (jwz)dln, +T —x,4]

(diffusion velocity W=U,-U,), (8e)
P=-(wz)mU (pressure deviator), (8f)
q,==Gwz)l[T =x,A] } (heat fluxes) , (8g)
q2==Gwz)l,[T +x,A] (8h)

A =—iwz)T[W - (g,/x,)]
(temperature separation A=T,-T,); (8i)

where most definitions and reference parameters
are similar to those used in obtaining Eqs. (1a)-
(1le); x,; is the volume fraction of speciesi (=1,
2). The reference frequency is here taken to be
the relaxation frequency w, for separation of
temperature between the species,

wa =2¢%,/D, 9)

where D is the usual coefficient of diffusion.®®
The nondimensional transport coefficients are
related to those in common use by the formulas

d=Dw,/c*,=2 (diffusion), (10a)

m =8l ,x,/p,D (Viscosity) , (10b)

1;=x10Towa/poc? (thermal conductivity) (10c)

7=(¢)1-iw]™ (A transport), (10d)

where L, and );, are given by Ref. 7, Egs. (27a)
and (27b), respectively.

The dispersion relation following from Egs.
(8a)— (8i) has been obtained numerically for real
w, for mixtures of xenon and helium at standard
temperature and pressure, with the pure-gas
viscosities and the mixture coefficient of diffu-
sion as experimental input.’* The results of
these calculations are presented in Fig. 3 for
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FIG. 3. (a) Dispersion and (b) absorption in mixtures
of Xe-He for He volume fractions x;=0.450 and x
=0.475. Solid and dashed curves refer to the sound
mode and the interfering mode, respectively. In (a),
the dispersion of the sound mode for x;=0.475 overlaps
that of the interfering mode with x4 =0.450 to within
graphical accuracy, for w= 75 MHz/atm.

two different but similar compositions. It is
evident that there are a critical composition x,,
of helium (0.450 <x,,<0.475), and a critical fre-
quency w, (w,~73 MHz/atm, corresponding to
a rarefaction parameter v =p,/uw=10.5), which
characterize double-sound-propagation effects
analogous to those already described. The effect
of increasing the helium fraction x, in this case
is very similar to that of increasing the viscosity
m in the predictions following from Egs. (1). At
frequencies higher than w ., for compositions
near the critical, such as those shown in Fig. 3,
two propagating modes are predicted, of compar-
able absorption but very different speed of propa-
gation. For He compositions less (greater) than
critical, the low-frequency sound mode goes over
into the slower (faster) of the two predicted
waves.

Calculation shows that standard hydrodynamics
(with use of Maxwell forces, and simplified trans-

port coefficients®-7) also predicts double sound
propagation in Xe-He, with a similar critical fre-
quency, but a critical composition 0.225<x,
<0.250.

Finally, it should be emphasized that the pre-
dictions presented here can be tested by experi-
ment at the present time.'® The frequencies of
interest are well within experimental capability,
as well as being low enough that mean-free-path
corrections should be unimportant.
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