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Nonlinear Saturation of the Buneman Instability
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An analytical model is developed for the nonlinear evolution of electron-ion two-stream
instability. The instability saturates when the electric field energy reaches ™2(m/N)f/3

8 p (Wp = initial electron drift energy density), and is then followed by an algebraic growth.
Complete stabilization is caused by electron trapping in deformed potential wells due to
the rise of higher harmonics. The analytical model results are in close agreement with
nonlinear kinetic computer simulations.

PACS numbers: 52.35.Py, 52.40.Mj

The Buneman instability' is expected to occur
when relative streaming velocity between elec-
trons and ions much exceeds electron thermal
velocity, as in early stages of various pulsed
heating experiments (8 pinch, turbulent heating).
The knowledge of the saturation level of the insta-
bility is of crucial importance for estimation of
various transport coefficients such as anomalous
resistivity due to the instability. Since the insta-
bility is "strong" with the growth rate comparable
with the frequency, and the phase velocity is re-
motely separated from the electron drift velocity,
it has conventionally been presumed that the in-
stability can saturate only when the field energy
becomes comparable with the initial electron-
drift energy density, 5;.' Recently, Hirose' has
pointed out that the linear growth of the instabili-
ty should break down when the field energy be-
comes of the order of (I/M)'"W„and concluded
that the anomalous resistivity associated with the
instability scales as (m/M)'~, rather than (m/
M)"', with m/M the electron/ion mass ratio.
However, it is not obvious whether a slower
growth stage (probably with algebraic, rather
than exponential, growth) can follow the apparent
saturation and if this is the case, it is of impor-
tance to determine the ultimate saturation level.

In this report, it is shown that (a) the existence
of the algebraic growth stage critically depends
on the mass ratio; (b) the final saturation is

caused by electron trapping in a nonsinusoidal po-
tential well. The harmonics play an essential role
in electron trapping, which takes place at a rela-
tively low (= 0.1W,) level of field energy.

The theoretical method presented here is to
solve a nonlinear dispersion relation for the Bune-
man instability, which takes into account the re-
normalization of the electron velocity distribution
function, namely, the deceleration of the initial
drift velocity and the "heating" of the electrons.
Harmonics play a key role in the initial satura-
tion4 and in the eventual electron trapping found
in our computer simulations. Therefore, nonlin-
ear interaction between the fastest growing funda-
mental mode and its higher harmonics, due to
forced oscillations, is also taken into account.
Furthermore, we find it essential to allow a shift
in the frequency as well as the change in the
growth rate. This frequency shift is important
since, in the Buneman instability, the frequency
(ReA) and the growth rate (ImA) are tluite com-
parable. In fact, we have found that the frequency
shift occurs first, and the reduction in the growth
rate is induced by the frequency shift.

We assume a one-dimensional plasma composed
of a cold electron beam drifting relative to ions
with an initial drift velocity V,. If the initial ther-
mal fluctuation level is sufficiently small, the
electron-ion two-stream instability should be
dominated by the most unstable mode, '

A, (0) =(o,(0) +i@,(0)

for kV, =(d~ is the electron plasma frequency. The dispersion relation for the electron-ion two-stream
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instability may be expressed as'

1 + Xe, QL +Xe, klC +X k

where
t'

)(, =to, 'exp[if, Q, dt']f dt'(t —t') exp(-if, &„dt')

and the quasilinear electron susceptibility is defined by

2—~e
[kVoi(t) -Q~(t)] —3k Toi(t)/m

'

The mode-coupling electron susceptibility can be approximated in terms of electric field as

3 e ' k'IE~I' 179 e ' k'lE~ l'
2 m (dpe — 48 m (dge

(2)

(3)

(4)

To obtain this expression we have solved the
Vlasov equation together with the Poisson equa-
tion for an electric field

E 2 Q„(E„(0)exp[i(kx —f,'n„dt')] +c.c.)
in the presence of higher harmonics (2k and 3k
modes). Contributions to the mode coupling term
of the perturbed distribution function f, come
from the interactions 4 with 2k and 2k with 3k.
The drift velocity Voi(t) and the electron temper-
ature To~(t) are given by the conventional quasi-
linear equations

is no longer exponential but is well characterized
by an algebraic growth. The oscillating behavior
after the first saturation is due to the strong mod-.
ulation in the growth rate, which is caused by the
frequency shift as explained earlier and not by
particle trapping. The instability finally saturates

2
k lEkl-
167rWo

dVoi e ~ y~k(kV„- to~) lE~ I

m „[(kV,—~,)'+y, 'I' '

dToi e' . y IE I'
dt m ~ (kV, —to„) +y~' ' (7)

0.1

The nonlinear dispersion relation given above is
valid until resonance or particle trapping becomes
important. As we will show later, particle trap-
ping takes place very abruptly, and the equation
can well describe the development of the insta-
bility up to the time when trapping occurs.

Since we are interested in the temporal evolu-
tion of the complex frequency Q~(t), it is conven-
ient to differentiate Eq. (2) with respect to time.
Substituting Eqs. (6) and (7) into Eq. (2) yields two
closed, simultaneous differential equations for
cu„(t) and y„(t) which have been numerically solved
for various mass ratios. Initial amplitude of the
electric field E, does not affect the nonlinear be-
havior of the instability, but determines the lin-
ear growth period. The time is normalized by
the inverse of the initial growth rate, v =y„(0)t.

Figure 1 shows the time evolution of the elec-
tric field energy in the case of an argon plasma
(M/m=1836x40). The linear growth of the insta-
bility breaks down when the field energy becomes
of the order of (m/M)'I'W„after which the growth
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FIG. 1. Time variation of electric field energy densi-
ty. Solid line is s solution of Eq. (2) ~ lEq(0)l /16wwo
= 1.6&& 10 . S'p = initial electron drift energy density.
Broken line is a computer simulation. The initial time
of computer simulation is shifted to 7'=-2.9 for the con-
venience. 7'= & I, (0)t.
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at the level of 0.13K,. In the Buneman instability,
the harmonics must appear as forced oscillations
because of a strong dispersive nature. Thus the
harmonics return their energy back to the funda-
mental to destabilize further. At the first satura-
tion, the field energies differ by a factor of 2.5
with and without the harmonics, as predicted by
Bartlett. 4 At a later time, the difference becomes
smaller, and the dispersion relation obtained by
Bartlett becomes inaccurate.

Qualitatively, the substantial reduction in the
growth rate is caused by the "heating" of the elec-
trons and, what amounts to the same thing, elec-
tron deceleration. However, the algebraic growth
stage can be revealed only by solving the nonlin-
ear dispersion relation as an initial-value prob-
lem.

We have solved the nonlinear dispersion rela-
tion for a wide range of the mass ratio, M/m
=1836x1-1836x200, to see how the first and the
final saturations depend on the mass ratio. The
first saturation (breakdown of the linear growth)
occurs at

2, IE,I'/&6 = &.5(m/M)'"IV

in agreement with the previous estimate. ' The
final saturation level weakly depends on the mass
ratio,

5, I &,I'/&6~ = 0.2W, (a = l) -o.lW, (a =200)

withe the atomic mass. For a hydrogen plasma,
both saturation levels almost coincide, and there
hardly exists an algebraic growth stage.

Whether the final saturation level found above
is real or not can be checked by electron trajec-
tory calculation. If electron trapping takes place
at the field energy, the electron drift energy is
completely thermalized and no further growth is
expected. In calculating electron trajectories,
200 electrons per fundamental wavelength are em-
ployed. The motion of each electron is followed
in the electric field found from the nonlinear dis-
persion relation. Two relevant quantities, elec-
tron drift velocity V(t) and "thermal" energy T„
are then computed from

E
V(t) =—Qv, (,t) Pr =200),

N ]

In Fig. 2, the time evolution of the thermal ener-
gy T,(t)/2 thus found is shown. The sudden jump
in the thermal energy is due to electron trapping.
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FEG. 2. Time variation of thermal energy of electrons.
Line with circles, trajectory calculation based on the
analytical model; solid line, computer simulation.

It should be noticed that trapping occurs at the
field energy level very close to the final satura-
tion level predicted from the analytical model.
The trapping occurs very abruptly, and our ana-
lytical model seems to hold very well up to the
trapping. The field energy after the trapping is
expected not to vary appreciably, and we may

- conclude that the final saturation predicted from
the model is real. A similar comparison has
been made for other mass ratios. The field en-
ergy level at which electron trapping takes place
is rather independent of the mass ratio, and is
given by (0.13+0.02)W, . This is about four times
larger than that expected from the conventional
trapping condition, 2ep) mV, '/2, where V, is the
initial electron drift velocity and we have neglect-
ed the phase velocity (u/k [= (m/M)'~'V, ] com-
pared with V,. This discrepancy may be explained
as follows. As the instability grows, both the
drift and thermal velocities of the electrons
change. The drift velocity decreases by the
amount 4V= (e'/2m')k'q&'/&u~, ' The therm. al or
oscillatory electron velocity defined by v = [T(t)/
m] '~'=eke/&2m&v~, is a quantity of the first order
in y, and makes a large contribution to the kinet-
ic energy of an individual electron. At the bottom
of the potential well (minimum of —ep), the in-
stantaneous electron velocity is then given by V,
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—hV+v 2v, and the trapping condition becomes
2e p )m V,'[1 —(2e p/m V,')'/8+e p/m V,'] '/2. Solv-
ing this inequality for p, we find e +) 0.92m Vo'/2
or, in terms of the field energy, we obtain IE('/
8~n~V, '-0.1.1 which is close to that found in our
numer ical analysis.

One-dimensional computer simulation for the
electron-ion two-stream instability in an argon
plasma has been carried out. A fully nonlinear
and kinetic particle model' is used, moving 4096
electrons and 4096 ions on a periodic system of
length 2m with 256 cells. Initially ions are cold
and stationary while electrons are drifting with
small spread ([v(0) —V(0)]') =4x10 ', where
V(0) = V(0)/V, = 1. The simulation and analytic re-
sults agree throughout, confirming our nonlinear
model of the Buneman instability. With argon
mass ratio, the fluctuation energy shows the first
saturation at the level of 0.035$", which is fol-
lowed by algebraic growth in an oscillating man-
ner, and saturates completely because of electron
trapping at the level of -0.15W, (Fig. 1). The ini-
tial time is shifted to v =-2.9 so that we could
easily compare the simulation result with that of
the analytical model ~ The thermal energy of elec-
trons is shown in Fig. 2. The thermal energy in-
creases abruptly when electron trapping sets in.

In conclusion, we have shown that a simple non-
linear dispersion relation can well describe the
time evolution of the Buneman instability provid-
ed mode-coupling effects are properly taken into
account. For a large ion-to-electron mass ratio,
the algebraic growth stage exists between first
and final saturation. The final saturation takes
place at the field energy -0.1& initial electron
drift energy, consistent with the trapping condi-
tion based on quasilinear moment quantities. The
results are in close agreement with computer
simulation of the Buneman instability for the ar-
gon plasma.
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Time-resolved 20 spectra from glass mieroballoons irradiated by 100-ps, 2&& 10 6-
W" cm laser pulses have been obtained with a temporal resolution of 20 ps and a spec-
tral resolution of 15 A. Pulsed emission is observed, with a pulse duration of less than
the instrument limit. Both red and blue peaks appear simultaneously, with their separa-
tion varying in time.

PACS numbers: 52.25.Ps, 52.50.Jm

In recent years much theoretical and experi-
mental work has been performed to study the var-
ious parametric processes which occur in laser-

produced plasmas at high irradiances. At one
quarter of the critical density both stimulated
Raman scattering' and two-plasmon decay' can
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