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R. K. Bhaduri, L. E. Cohler, and Y. Nogami
DePartment of E%ysics, McMaster University, Hamilton, Ontario L8$ 4M', Canada

(Received 14 January 1980; revised manuscript received 7 March 1980)

This Letter demonstrates that the nonrelativistic approximation breaks down for the
lighter hadrons with the conventional qq one-gluon exchange potential. This is mainly
due to the Coulomb and the short-range hyperfine interactions. To overcome this dif-
ficulty, some phenomenological interactions with a long-range spin dependence are pro-
posed. The validity of treating the spin-dependent term as a perturbation is examined.

PACS numbers: 12.70.+q, 12.40.Cc

A fundamental question pertaining to the quark
model is whether it is possible to regard the had-
rons as nonrelativistic bound systems of quarks,
i.e. , qq or 3q. In order to answer this question,
one may start by assuming a qq (or qq) potential,
solve the two-body (or three-body) Schrodinger
equation, and ascertain whether the quark veloc-
ities are indeed nonrelativistic by computing (v'/
z') from the kinetic energy This .has been done
for charmonium, ' where it is found that (v'/c )
= 0.2 for the ground state, increasing to about 0.4
for the highly excited states. One of the aims of
the present paper is to carry through this pro-
gram for the ground states of the lighter baryons
and the mesons. Relativistic corrections in the
ground-state mass splittings of these are found
to be small only with a judicious choice of the in-
teraction, and a spin-dependent force of long
range. Moreover, perturbative estimates of the
spin-dependent potential are shown to be inade-
quate if it is of very short range.

The validity of the nonrelativistic approxima-
tion surely depends on the masses of the quarks
and the form of the interaction potential chosen.
Consider, for example, the hypothetical problem
of a qq pair bound in a bare Coulomb potential.
The energy spectrum is given by E„=-R/n',

when R is a constant and n=1, 2, etc. The split-
ting ~ between the 1S and 2P states is —,'R, while
the kinetic energy (T) in the ground state is R.
Choosing AE =400 MeV, and the mass ~ of each
quark to be 336 MeV, we find(T)/2m =0.8, which
is much too large. On the other hand, if the
same qq pair is bound in a harmonic potential,
then AE =5+, and (T) =4@co, so that in this case
(T)/2m =0.45. This indicates that whereas a
Coulomb-dominant qq potential is all right for
charmonium (with m ~ 1.6 GeV), it is unaccept-
able for the lighter mesons. In this connection,
we first examine the qq potential proposed by De
Rujula, Georgi, and Glashow, ' which is based on
the one-gluon exchange. It is of the form

v, , =v(r, ,)+an. s...
where U is the spin-independent universal con-
finement potential, and 0, is the effective gauge
coupling parameter which is taken as a constant
for simplicity. The constant k is —3 for qq and
—~4 for qq. The form of S„.is exactly analogous
to the two-electron interaction, and when we
ignore the tensor and spin-orbit parts (for S
wave), contains a Coulomb term, momentum-de-
pendent correction terms, and a hyperfine spin-
dependent term proportional to (m,.m, ) '(s, ~ s,.)
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&6(r;,).. Here m;, I,. are the masses and s, , s,.
(=-,'o,.) the spin operators of the interacting quarks.
Note that in atomic calculations hyperfine split-
tings are very small and may be estimated by
first-order perturbation; for this reason the 5-
function representation is very convenient. If,
on the other hand, one wants to solve the Schro-
dinger equation with potential (1), 0 (r) must be
replaced by an appropriate form factor f (r, r, ) of
range' r,. Otherwise the system collapses for
attractive 6(r). Since in the hadronic problem
spin splittings are sizable fractions of the ob-
served masses (e.g. , between N and b, ), a per-
turbation treatment is questionable. We shall
deal with this point later at some length.

It is important to realize that in the pioneering
work of De Rujula, Georgi, and Glashow, ' the
nice fits in the baryons and 1 mesons were ob-
tained not by solving the Schrodinger equation,
but by parametrizing matrix elements like
(@ir 'i4') and (4'ib(r)i4). Their conclusions would
not change if the radial dependences of the above
two potentials were altered. The same wave func-
tion 4 was used for all S-wave baryons, and dy-
namical questions, like the magnitude of (v /c),
or the asymmetry in the spatial wave functions
of A and Z, were not investigated. Their work,
therefore, had nothing to say either about the
validity of the nonrelativistic approximation, or
about the range of the spin-dependent force. It
did show, of course, that the coefficient (~,~,.) '
in the spin-dependent term played a vital role in
the fit. De Rujula, Georgi, and Glashow' also
pointed out that the potential V, ,- that fits the S-
wave baryons and the I mesons cannot be expect-
ed to fit the 0 mesons because of the importance
of the two-gluon exchange term.

To our knowledge, no one has attempted to
solve the three-body Schrodinger equation for the
baryonic problem with the interaction given by
Eq. (1). Recently, Warke and Shankar' attempted
a variational calculation retaining the 5 function
in the spin-dependent term. Since the three-body
Hamiltonian with an attractive 5 function has no
lower bound, the significance of their work is
questionable. We replace it by a suitable form
factor' f (y, y, ) of range' r, If one wan. ts to in-
clude the momentum-dependent terms in the po-
tential (1), these must also be regularized con-
sistently. We solve the three-body Schrodinger
equation by the Feshbach-Rubinow (FR) method, '
as generalized in other applications for unequal
masses and force bonds. ' This method assumes
that the S-state three-body wave function 4', is a
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function of a single variable R = 2(x+y+7lz),
wherex=r», and likewise for y ands, and g is
a variational parameter to account for the asym-
metry. The three-body Schrodinger equation
then reduces to a single Schrodinger-type equa-
tion in one variable R, and may easily be solved
on a computer. The minimum energy is obtained
by varying g; for N and 6, g = 1 since the force
bonds and the rriasses are i.dentical. While we
cannot give the details of the method; we empha-
size that its accuracy has been satisfactorily
tested both for long-range atomic problems' and
for short-range nuclear problems' using central
forces. Moreover, we test the accuracy of this
method in the present context in an exactly solv-
able model, to be described later. For the inter-
action (1), the quark confinement potential was
taken to be a ramp. For the quark masses, we
put m„=m~ and m„/m, was restricted in the vi-
cinity of 0.6. The parameters m„, m„n„and
an overall constant C were varied to fit the mass-
es of N(939), 6(1232), N*(1470) and A(1116). It
was possible to get a number of sets. In all cas-
es, however, the rms radius of the nucleon
shrank to 0.3 fm or less, with the result that the
total kinetic energy of the three quarks was
& 1600 MeV. The best fits were for ypg„- 500 MeV,
so that (T)/3m, ) 1, and the system is clearly rel-
ativistic. When we recall our comments about
Coulomb-dominated potentials, this result is not
surprising.

In the choice of the radial forms for the inter-
action (1), one was guided by the ideas of quan-
tum chromodynamics and the one-gluon exchange
potential. Its essential ingredients, however,
were a confinement potential and a spin-depen-
dent term whose coefficient was mass dependent.
We now show that it is possible to construct phe-
nomenological qq interactions that retain the
above two ingredients, and fit the ground-state
masses with (v'/c') (0.5. As an example, we
propose the harmonic interaction'

V), = F; F,f- 2(c[1+(m;m, )"Xo'; o;]r'+C J, (2)'
where x, X, and C are adjustable constants and

(F, ~ F,.) = ——,
' for qq, —& for qq. The three-body

problem with this interaction is exactly solvable.
We find that the best fit to mass splittings is ob-
tained when n = —2, and the calculated masses
are displayed by the first column of numbers in
Table I. We chose the quark masses ~„=nz,
= 336 MeV; the constants ~, ~, and C were ob-
tained by fitting the masses of K and 6 and the
rms radius of the nucleon, "and ~, = 595 MeV
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TABLE I. H,esults of the model calculations. The
kinetic energy of the three quarks in the nucleon is
denoted by (T)„snd given in the first row. The rms
radius of the nucleon (in femtometers) is given in the
second row. All energies are in megaelectronvolts.
The mass of N(939) is exactly fitted in all cases. The
baryon results, except in the first column, are ob-
tained by the FP method. The interactions are ad-
justed to fit the baryons only. The 0 mesons cannot
be fitted by the same parameters (see text).

Model
Eq. (2)

FH method Eq. (3)

(Tbr
(~2 ) 1/2

A(1116)
~(1193)
"-(1318)
a(1232)
Z*(1385)
=*(&533)
n(1672)
¹(1470)
p (773)
Z +(892)
y(1020)

399
0.660

1103
1187
1337
1231
1385
1540
1695
1471

723
893

1060

409
0.668

1106
1187
1337
1239
1391
1542
1694
1484

503
0.606

1112
1194
1336
1234
1378
1522
1668
1476

738
888
1039

was chosen to obtain a good overall fit of the
strange baryons. We found ~ =437.5 MeV fm ',
x = 101.6 MeV, and C = 433.5 MeV. For the three
quarks in N, the total kinetic energy is 399 MeV,
so that (T)„/3~„=0.40, corresponding to (v'/c)
=0.44. For 0, the value for (v'/c') is 0.32.
These indicate that the 3q system with the inter-
action (2) may be regarded as marginally nonrel-
ativistic, the (v'/c') for a quark being in the
same range as in the 4S excited state of the char-
monium. ' The nonrelativistic approximation will
be questionable for the excited states of the bar-
yons, where relativistic corrections will be much
larger as compared to the ground state. We are
therefore of the opinion that whereas it may be
meaningful to use the nonrelativistic model for

the mass splittings in the ground state of lighter
baryons, spectroscopic calculations are suspect.

The interaction (2) was also used to test the FR
method that we apply to solve the three-body prob-
lem. Being variational in character, it under-
binds the nucleon by 19.7 MeV, and so we read-
just the constant C in Eq. (2) to 443.4 MeV. The
results of the FR calculation are displayed in the
second column of Table I, and it is seen that the
mass splittings are accurately reproduced in this
approximation.
The same interaction (2) was also used to com-

pute the masses of the 1 S-state mesons, with

(F; F,) = —~. These come reasonably, as dis-
played in Table I. For p, (v'/c) =0.48, and for
the others it is less. We do not expect the same
effective qq interaction to reproduce the 0 mes-
on Rs explained by De Hujula, Georgi, and
Glashow. ' We find the calculated masses of p and
E to be 261 and 628 MeV, respectively, much too
high.

A number of effective interactions similar to
(2) may be constructed. One such potential is

V„.=F,. F,.(-~[~+(~,.~,.) ) o, o, r ']+C). (3)

Using the same procedure as before, we find ~
=445.6 MeV fm ', X =0.3625(ch)', C =631.5 MeV,
~„=m„= 336 MeV, and m, = 585 MeV. The mass-
es obtained with this potential are also displayed'
in Table I. As suggested by Schnitzer, "Khare, "
and Tabb, "the I/r-type spin dependence arises
naturally from a ramp confinement if the latter
is generated through a vector exchange between
quarks How. ever, in this case (v'/c') for a
quark in a nucleon is 0.5, and relativistic cor-
rections are correspondingly larger. Note that
the slope of the ramp for qq system in Eq. (3) is
594 MeV fm ', which is only about two-thirds'
the value of that in charmonium. '

Finally, to demonstrate the importance of the
range of the spin-dependent potential and the in-
adequacy of the perturbation estimate, we con-
sider the potential

V,,=F, .F,.[-—.'~~' —(m,m, ) 'Xf(~, r,)o; ~ o,. +C]. (4)

Here, f is the same form factor as defined be-
fore, and ~„=~„=336MeV. The parameter ~ is
fixed at 241.5 MeV fm ', and, for a given choice
of r„X and C are determined by solving the
three-body Schrodinger equation and fitting the
masses of N and h. As the range yp drops much
below 1 fm, we find that the kinetic energy of the

! quarks increases rapidly, and the system be-
comes relativistic. " For example, for pp 0 1
fm, the kinetic energy (T) of the three quarks in
the nucleon is 1711 MeV and the radius shrinks
to 0.49 fm; in the perturbation approach, one
uses the oscillator wave function to find that (T)„
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is only 355 MeV, and the rms radius of the nu-
cleon is 0.7 fm. Moreover, the splitting between
the 6 and N, with oscillator wave functions, is
only about 70 MeV, compared to 292 MeV as ob-
tained by solving the problem dynamically. The
situation improves markedly if y, ~ 1 fm. For
example, with &0=2 fm the dynamical calcula-
tion yields (T)„=453.5 MeV. In this case, the
perturbation estimate for the 6-N mass splitting
is 270 MeV, quite close to the true value. We
therefore think that a very short-range spin-de-
pendent interaction would invalidate the nonrela-
tivistic approximation, in addition to making in-
accurate the perturbation estimates of the mass
splitting s.

In summary, we have shown that the interac-
tion potential proposed by De Rujula, Georgi, and
Glashow' is unsuitable for dynamical nonrelativ-
istic calculations of light hadrons. We have also
proposed some ad hog effective interactions in
which relativistic corrections are much smaller
and which fit the ground-state masses of the light-
er baryons. A long-range spin-dependent force
seems to be necessary for such fits if dynamical
calculations are performed.
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