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Interpretation of the U(1) generator of the left-right-symmetric electroweak model in
terms of &-L enables us to study the spontaneous breaking of local J3-L symmetry.
The same Higgs mechanism at the "partial unification" level of SU(2)&N) SU(2)& SU(4')
that produces Ai =2 processes (e.g. , Majorana neutrinos) also yields 4& = 2 processes
(e.g. , "neutron oscillations"). The observation of "neutrinoless" double P decay and b&
=2 nucleon transitions without proton. decay would favor this model and an intermediate
mass scale.

PACS numbers: 12.20.Hx, 11.30.Er, 11.30.Qc, 14.20.Cg

Recent successes' in interpreting the results of
neutral- current weak- interaction experiments in-
volving neutrinos and electrons in terms of the
standard gauge model' of weak and electromag-
netic interactions has led to wide acceptance of
SU(2)L, S U(1) as the local electroweak symmetry
at low energy. This symmetry is supposed to
manifest itself above the mass scale of the order
of 100 GeV, the mass of W and Z bosons. It is
necessary for further understanding of the elec-
troweak interaction to probe beyond the above en-
ergy scale and look for new effects which could
signal the existence of any possible higher local
symmetries. One such local symmetry, ' sug-
gested earlier to restore parity to the status of a
short-distance symmetry of weak interactions, is
SU(2)~ SSU(2)z S U(l)z, +z. This model has been
studied extensively and it is known that if subse-
quent to spontaneous breakdown, m~ »m~, theW~ lVI p

structure of the low-energy neutral-current weak
interaction is indistinguishable from the standard
model for (m~ /m~ )' less than 10/o.

L
Two recent developments have inspired the in-

vestigations reported in this paper. First, it
was noted' that unlike the case of the SU(2)z SU(1)
model, the vector U(l) generator in the left-right-
symmetric model can be identified with B-L sym-
metry. One implication of this observation is
that the mass scale associated with spontaneous
breakdown of parity could be associated with the
breakdown of local 8- L electroweak symmetry.
To see this explicity, we note that in the SU(2)~
SSU(2)nSU(l)s ~ model, electric charge is given
by Q =I»+I»+ , (B L), -whe-re I» are the gene-
rators of the SU(2)~~ groups. The above. relation
implies that EI» = —,A(B —L) in the —energy re-
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gion where SU(2)~SU(l)& is a good symmetry
(Y~ is the weak hypercharge of the standard mod-
el). Furthermore, the left-right-symmetric mod-
el enables us to study the phenomenological impli-
cations of local B Lbrea-king' and the possible
existence of intermediate mass scales without
reference to grand unification models. The sec-
ond development is the observation by Senjanovic
and one of the authors (H.N. M. )' that relating the
breaking of 8 -L symmetry to that of the dis-
crete parity symmetry implies a Majorana neu-
trino and, furthermore, the smallness of neu-
trino mass is then related to the dominant V -A
nature of the weak interaction at low energy. Ob-
served upper limits on the masses of all three
neutrinos are consistent with a value of m~ R
& Smi,

In the present paper, we extend the above con-
siderations by generalizing the model to include
the full quark-lepton correspondence. The most
elegant formulation appears to be in terms of the
"partial unification" group SU(2)~ SSU(2) s SU(4'), '
where SU(4') unifies color and 8 Lsymme-try.
We find that within this framework, an immediate
implication of (B L)-symmet-ry breaking is the ex-
istence not only of Majorana neutrinos' (b, L = 2 in
the lepton sector) but also the new phenomenon of
n —n transitions (aB= 2 in the hadron sector),
which we call "neutron oscillations. " The experi-
mental feasibility of measuring ~B= 2 nucleon
transitions is also noted.

As stated, we work within the "partial unifica-
tion" group SU(2)~SSU(2)zSSU(4') for electroweak
and strong interactions', we consider one genera-
tion of quarks and leptons for simplicity. The
fermions are assigned to the following represen-
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tations:

~~„=-(-'~0~4)~ +~. =(0~'~4»

where the color index i =1, 2, 3, 4, or, explicit-
ly

Z. i Q2 Q3 V

d d2d 8

The U(1) generator identified with 8-L is given
by

0 0 p

L =(')j~~y
0-,' 0 p

0 0-', 0

0 0 0 —1

There are two gauge couplings: gi =g„=g; and f,
the SU(4') coupling. We envision a mass scale
mx such that the "partial unification" group breaks
down to the level of SU(2)i @SU(2)„SU(1)~ i SU(3)„
which breaks down in stages to SU(2)1, 8 U(1)8SU(3),
and subsequently to U(1)cmSU(3), with m~ and

mw being the corresponding mass scales, re-
spectively. Since we expect mx) 10' GeV because
of the absence of Kl.-p'e decay, ' the mass hier-
archy would be m~)m~ »mw»1 GeV. In Refs.Wg Wg
3 and 7, we have argued from considerations
based on the neutrino mass as well as the neutral
current interaction' that mw & 300 GeV. We note
that the breakdown of SU(4')- U(l)s ~SU(3),

Q, ",",)-=vw 0; (b, i „:)=0. (2)

Equation (2) reduces the local flavor symmetry to
SU(2)i U(1) for m~ =gv, which is further bro-
ken' by choosing (4) = (,"„;),where gK= 100 GeV,
the mass scale of Si. As is well known, ' the
masses of charged fermions arise due to (C) & 0;
this constrains the Yukawa-Higgs couplings to be
of order h-g(m, /m~ ).

To study the implications of (8- L) breakdown
in detail, we write down the gauge-invariant Yu-
kaw a couplings

could be achieved either dynamically or via a
Higgs multiplet Z that belongs to the representa-
tion (1,1,15) under the gauge group with (&)„„
=diag (1,1,1,- 3)m„/f.

It is in the remaining Higgs multiplets that the
full implications of (B-L)- symmetry breakdown
surf aces. We therefore display them below. We
consider the "minimal" model, namely only those
kinds of Higgs multiplets that can arise as bound
states of existing fermion multiplets. Our results
therefore do not depend on the existence or nonex-
istence of physical Higgs mesons but simply on
the pattern of symmetry breakdown. The rele-
vant Higgs multiplets are @=(2, &, 1), hi=—(1,0,
10), and 6„—= (0, 1,10). Making the color and fla-
vor indices explict, the b, 's can be written as
b,i,. and b.„, , where i, j are SU(4') indices; a
is the flavor index and the 6's are symmetric in
i,j. The breakdown of parity and 8- L local sym-
metry are achieved by

Sp=ih((i, . rp, C (L„qhzi, +4~, , war, C %~ she, ,')+hPsq'%~+hi 4sy4~+H. c. (3)

As was noted in Ref. 7, (&„"442)&0 along with the contribution of (4) leads to the following mass matrix
for the neutrinos (let v=- vz, and N= vz):-

where m, =h, ~ and m„=he=gmw . From this it follows that the usual neutrinos must be Majorana par-
ticles with" ' m„=m, '/pm~„. We thus see that the smallness of the neutrino mass is related to the
dominant V-A nature of the charged weak current at low energy. On the other hand, since g -e, m„
a100 QeV, reflecting the breaking" of I». This implies the breaking of ~ —L which is consistent with
a Majorana neutrino (for which 4L = 2).

The Majorana character of v, predicts the existence of double P decay coming from the exchange of
two W„bosons with the heavy Majorana neutrino counterpart as intermediate state. Thus far, the ex-
isting lower limit on the lifetime for double P decay is consistent with the predictions of our model (see
Ref. 7). Another consequence of the Majorana neutrino is the production of "wrong"-type charged lep-
tons in inverse p decay; here, the model prediction is much lower than the experimental limit" be-
cause of the (m„/8 „)suppression factor (8 „ is the neutrino energy).

We now discuss the implications of B —L nonconservation for the hadronic sector. First we note that
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there exists a self-coupling of the scalar multiplet 4~ ~ as follows:

Z =X[~*" 0""'a . '~ 'a 'a '+(L, -a)+H.c.j.
From Eqs. (2), (3), and (5), it follows that there exists a six-fermion vertex of type (see Fig. 1)

(5)

where the Greek letters a, P, . . . denote color.
This Lagrangian causes the transition n —n
which we call neutron oscillation. " The impor-
tant point, which becomes obvious looking at Fig.
1, is that the AB =2 n-n transition is caused by
the same spontaneous breaking mechanism (i.e. ,
(b,s,g& 0) that causes &I & 0. We now estimate
the strength of the rt-n transition It«t= Ak'(b, s «)/
m~ '. We see that as (hn «) —0 (i.e. , restora-
tion of parity as well as B —L symmetry), the n
n oscillation disappear. We may choose the coup-
ling A-10 ' (since it is related to the mass of the
heavy Majorana neutrino') and it becomes of in-
terest to relate the characteristic time t„-„for
the neutron oscillation to m». If we use the lim-
iting lifetime resulting from the observed nuclear
stability, "of 10"yr, this corresponds to m~~
=10 GeV and t„„-=10'sec. ' We stress that in
our "minimal" model (without any additional
Higgs beyond those already introduced), the pro-
ton is stable. " This is just the reverse of the
situation with the "minimal" SU(5) model where
AB = 2 transitions are forbidden. "

Thus, baryon number nonconservation —&vith or
without 8 —L conservation becomes a very.
interesting test of unification models. It would
seem that essentially the same experimental set-
up as the one which will be used to search for
proton decay could yield information about AB= 2
nucleon transitions. " The observation of such

g.P9

~v)
P&

FIG. 1. The tree graph that induces the six-fermion
A&=2 vertex that leads to n n oscillation.

transitions without proton decay would be strong
evidence for the existence of a "partial unifica-
tion" model of the type that we are considering.
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A relativistic wave equation is derived for gauge-invariant J=0 gluonium amplitudes,
and show that its reduced eigenvalue equation is identical with that for a quark-antiquark
system in P~ states. Analyzing relations between potentials in the two respective sys-
tems, I obtain an upper limit of 2 GeV to the ground-state mass if I take light quarkonium
as a reference system, whereas I estimate the ground state to lie between 2.5 and 3 GeV
if I use charmonium potential parameters. The scalar and the pseudoscalar gluonium
states are degenerate in the present approach.
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Gluonium spectra have been studied by several
authors~ in various models including the Massa-
chusetts Institute of Technology bag model and
lattice-gauge theory. Recently, Ishhwa' studied
a potential model of gluoniums using a variational
calc~~~~tion and obtained a relatively high ground-
state mass compared with previous works. In
the present paper, I derive and solve in the frame-
work of quantum chromodynamics a relativistic
wave equation with a confinement potential, sat-

isfied by a gauge-invariant two-gluon amplitude,
which represents a string of electric Qux connect-
ing the gluons. A gluonium in this model is very
much like a system of a massless quark and an
antiquark, except for a difference in potentials.
The potential for the former has a group-theo-
retical weight of ~ relative to the one for the
latter, as will be shown. The Coulomb potential
has the same weight, but it appears to be less
important for systems of massless particles as
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