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Interaction Effects in Disordered Fermi Systems in Two Dimensions
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Interaction effects in disordered Fermi systems are considered in the metallic regime.
In two dimensions, logarithmic corrections are obtained for conductivity, density of states,
specific heat, and Hall constant. These results are compared with a recent theory of lo-
calization as well as some experiments.
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Recently there are reports of logarithmic rise
of resistivity at low temperatures in thin films'
and in the silicon inversion layer. ' Many fea-
tures of these experiments are in agreement with
a prediction of Abrahams, Anderson, Licciardel-
lo, and Hamakrishnan'4 that electronic states
are always localized in two dimensions (2D). On
the other hand a numerical scaling study' ap-
pears to be inconsistent with this conclusion. We
note that the localization theory deals only with
noninteracting electrons. Before these experi-
ments are accepted in support of the localization
theory it is necessary to consider the effects of
interactions in disordered systems. This prob-
lem has been treated by Altshuler and Aronov'
for three-dimensional systems. In this paper we
extend their treatment to two dimensions and con-
sider additional physically observable quantities
such as Hall effect and specific heat.

Before dealing with the electron gas we first
consider a model problem of a fermion system
subject to a random external potential and inter-

~

acting with a weak short-range potential v(r —r').
We shall be in the "metallic" regime, meaning
that kFl »1, where l =~F7 is the electronic mean
free path. In this regime the conventional dia-
grammatic technique' is applicable' and a syste-
matic calculation to lowest order in v(r) is possi-
ble. Let us consider the vertex correction in
Fig. 1(a). A straight forward calculation shows
that for I& tv «1 and Dq'7 «1, where D = —,'e F'z
in 2D,

I"(q, (u, s„)=(I(o I+Dq') '~ '

if &„and &„—cu have opposite signs and is unity
otherwise. The singularity for small (d and q is
associated with diffusion as is clear from the
fact that Eq. (1) produces the proper diffusive be-
havior for the density-density correlation func-
tion. As an illustration we consider the exchange
self-energy correction shown in Fig. 1(c) which
leads to the following correction to the impurity-
averaged (denoted by a bar) single-particle densi-
ty of states:

5N(s ) = —w
' Im+ ~G (p, p, is„-s + iq)

=Im(-im ' Q v(q)f, (d(o/2m)7. '( i(u+Dq') -'G„'(p, s)G, (p-q, s -(u)).
Pot

(2)

Here we have specialized to T =0 for simplicity
of presentation and G,t(P, (u) = [&u —e(P)+ i2r] '.
The important term in Eq. (2) is the square of
the diffusion pole which comes from the two fac-
tors of vertex correction in Fig. 1(c). Clearly
q, ~ can be set to be zero in the rest of the ex-
pression of the p integration performed. Upon q
and v integration the diffusion poles then lead to
the following logarithmic correction to the density

states due to the exchange diagram

5N, „(e) 1 v(q)N,
N,

where N, is the single-spin unperturbed density
of states. In 3D similar considerations' have led
to a correction of order (er)' '(e, 7.) '. Such cor-
rections should be.observable in tunneling experi-
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FIG. 2. Conductivity diagrams.

FIG. 1. (a) Vertex correction where dashed lines with
a cross denote impurity scattering, (b) thick wavy line
denotes dynamically screened Coulomb interaction,
(c) and (d) exchange and Hartree self-energy correction.

v,(q, &u) =v (q)[1+v (q)II(q, +)] '. (4)

Here the bare Coulomb interaction vs{q) = 2we'/Iql
in 2D and II(q, i~„)= sN, Dq'/(ltd„l +Dq'), where s is
the spin and other degeneracies. Note that in the

ments. Furthermore for this model problem the
density-of-states corrections comes from correc-
tions in the eigenvalues and nor from the quasi-
particle spectral weight. Theref ore the correc-
tions should appear in the specific heat, as can
be confirmed by direct calculations. Physically
the eigenvalue of an added particle with energy e
is shifted by exchange interactions with the occu-
pied states. This shift depends on E because the
overlap matrix element with a state of energy &'

depends on e -&' in a way given by Eq. (1). This
energy-dependent shift is sufficient to give a log-
arithmic correction to the density of states. While
it is convenient to calculate in momentum repre-
sentation using averaged Green's functions, the
physics is much clarified in a representation us-
ing the exact impurity eigenstates. This latter
point of view will be present elsewhere. '

The conductivity can be calculated using stan-
dard diagrammatic techniques. Figure 2 repre-
sents all the diagrams generated in a conserving
approximation from the self-energy correction
Fig. 1(c). Again it is a systematic approximation
to first order in the interaction and in the kFl »1
limit. Instead of weakly-interacting-fermion
problem we now treat the electron gas. In the
small-q, ~ limit, the dynamically screened Cou-
lomb interaction is given [(see Fig. 1(b)] by

limit q, &-0, we may ignore the unity term in
Eq. (4) and v,(q, &u)-II '(q, ~) which is indepen-
dent of the bare coupling constant e'. Diagrams
2(a), 2(b), and 2(c) represent self-energy correc-
tion, vertex correction, and correction to the
scattering rate, respectively, and are found to
exactly cancel each other. Figures 2(d) and (e)
arise from the fact that impurity averaging of the
particle-hole propagator is not the product of the
averaged Green's functions. The real and imagi-
nary part of v, is found to contribute equally giv-
ing a conductivity correction due to the exchange
diagrams

e' 1 ln(Qr), T «Q «r '
I 2w' In(T~), Q«T«7

Note that the coefficient of the logarithm is inde-
pendent of the interaction constant for reasons al-
ready mentioned. Thus the ratio 5o'/v is propor-
tional to the resistance, consistent with the ex-
perimental observation. " Indeed the constant
(2m') ' is in excellent agreement with experiment. '
The nonlinear conductivity is explained by the
heating model' once a temperature-dependent con-
ductivity is obtained.

The fact that we obtain a logarithmic correction
even for a short-range instantaneous interaction
imply that corresponding corrections must exist
also for the Hartree term. This is because if the
interaction is a 6 function in space, the parallel-
spin Hartree and exchange terms must cancel.
The corresponding diagram is shown in Fig. 1(d).
Usually the Hartree term is canceled by the uni-
form background, However, in the presence of
impurities the electron density n(r) is not uni-
form so that when a particle with wave functions
g „ is added, a residual interaction of the form

*(r)g„(r)n(r) remains. The impurity average
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of this term cannot be factorized and the wave-
function overlap with the occupied states again
produce an energy-dependent Hartree shift. How-
ever unlike the exchange case, we see from Fig.
l(d) that the momentum transfer in the interac-

tion line is not small. The static screened inter-
action has the form V(q)=»e'/(Iql +K), where ~
=2pe'sN, is the inverse screening length in 2D.
Compared with the exchange term, the Hartree
term is opposite in sign and reduced by the fac-
tor

and re-
rpreted in

of an inde-
s a detailed

p
To gain more insight into the conductivity pro-

cess me have also calculated the Hall current.
The Hall current involves a second-order re-
sponse function linear in the electric and magnet-
ic field. This is obtained by adding a magnetic
vertex that carries momentum but not frequency
in all possible mays into Fig. 2. The computation
is rather complicated and the details mill be re-
ported elsewhere. " The result is simply that cor-
r ections to the Hall current vanishes. Since the
Hall constant RH goes like the resistance squared,
this implies

5c = (e'/4m%)(2 —2F) ln(T&),

where the factor 2F comes from spin degeneracy
and the fact that only the real part of v, contri-
bute to the Hartree term. Unlike the exchange
term, the Hartree contribution depends on the
coupling constant via 2k„/z. As noted earlier the
experiments appear to be consistent with the ex-
change term being dominant, i.e. , 2kF/K» l. It
will be interesting to decrease the electron den-
sity in the inversion layer to look for a systema-
tic deviation.

We emphasize that the present theory does not
involve localization. ' Apart from the density de-
pendence just discussed comparing our results
with the localization theory is complicated by the
fact that the localization prediction depends on the
inelastic scattering rate ~;„'eT and P is not
very well known at the moment. ' In the localiza-
tion theory 50 is proportional to s. For s =2 the
frequency-dependent conductivity '" in fact iden-
tical to Eq. (5) except that the condition is 0
»7;„. The dc conductivity in the localization
theory is proportional to P In(Tv) and is identical
to Eq. (5) for P = 1. It is worth noting here that
the inelastic rate due to electron-electron scat-
tering is modified from the usual T' dependence
in the presence of impurities so that P = 2 in
3D'" and p =1 in 2D. ' Still another point of dis-
tinction between the two theories is the cross-.
over from higher to lomer dimensions. In the
present theory the important region of integra-
tions is of order kT, so that crossover occurs
mhen one dimension is of order d given by

5R H/R H
= 25R/R.

This result shows that the conductivity correction
cannot be interpreted in the conventional sense of
a density-of-states correction or a scattering-
rate correction.

While we have not carried out the calculation to
higher orders in v(q), our estimates indicate that
it is a series in powers of (vN, /e F~) ln(T~) which
indicates the limit of validity of the present theo-
ry for small T. It has previously been stated'
that higher-order terms are much more singular,
but we nom find that those terms are in fact can-
celed.

Finally we mould like to summarize the results
for the density of states and specific heat. The
exchange contribution has been given in Eq. (3)
for a static potential. For a retarded interaction
such as Eg. (4), the density-of-states and speci-
fic-heat corrections are not the same because the
density-of-states correction is due partly to a re-
distribution in the quasiparticle spectral weight
and partly to shifts in the eigenvalues. Only the
latter contribute to the specific heat. Indeed di-
rect calculation of the free energy in the standard
way using a coupling-constant integration' shoms
that only the real part of v, (q, &u) contribute a log-

Dd '=kT. (8)

In the localization picture it is the diffusion length
in the time 7;„that sets the scale,"thus kT is
again replaced by 7;„' in Eq. (8). Present ex-

F =(2m', ) 'V '(q =0) Q V(p-p')G„@)G, (P)G„(P')G, (P')= f(d6/2m)[1+(2k&/~)sin-, '&]
P ~ P'

where 0 is the angle between p and p' and me have
used the fact that as ~ '-0, Ip!=kF. The factor periments' are consistent with Eg. (8)
I' approaches unity for short-range interaction quire a surprisingly large v;„ if inte
(2kF/~-0) as expected and vanishes for long terms of localization. Again, our lack
screening length. The total correction to conduc- pendent measurement of v;„'preclude
tivity is given by comparison at resent.
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5N(s) 1
ln(ls I 7') ln

E'

2%E F'T Dz

We recall from the definition that this is a densi-
ty of states for bare particles and tunneling is
probably the only way to observe it. No correc-
tion is expected for the magnetic susceptibility be-
cause the corrections are tied to the up- and down-

spin Fermi energy. (A similar effect is well
known for phonon enhancement of the density of
states. ) The specific-heat correction will be dif-
ficult to measure experimentally in 3D since it is
smaller than the usual linear term by a factor
(T/e F)' '(e ~T) ' ' which is small even for highly
disordered metals. The logarithmic correction
in 2D may have a better chance of being observa-
ble. Possible systems are doped semiconductors
of helium three adsorbed on Grafoil.
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Temperature Dependence of the Angle-Resolved Photoemission
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The prediction of the local band theory of itinerant-electron ferromagnetism for the
temperature dependence of the single-hole Green's function is obtained. Qualitative
agreement with observation is found, but the interpretation is novel. The underlying
spectral function is more complex than the simple two-peaked structure heretofore as-
sumed. Although the width of this complex shrinks with temperature, the shrinkage does
not correspond to a diminution of the exchange splitting as that quantity is most conven-
iently defined.
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The exchange splitting, and particularly its
temperature dependence, in band ferromagnets
such as iron and nickel, is fundamental to the un-

derstanding of these materials. It is therefore
surprising that no direct measure of it exists.
Perhaps even more surprising is that there is no
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