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Either the free-energy density describing the spin-density-wave state of chromium must
be allowed to depend on the electron density and local state of strain of the crystal (as
well as the order parameter) or highly nonlocal contributions to the free energy must be
included. The theory describes the linear polarization of the spin-density-wave state of

chromium, and other observable properties.

PACS numbers: 75.30.Kz, 75.50.Ee

A widely used phenomenological approach to in-
commensurable systems assumes that the free
energy can be written as a volume integral of a
local free-energy density, the free-energy density
being expanded in powers of the order parameter.
Such theories have been developed by Shimizu®
for the spin-density-wave (SDW) state of chrom-
ium, and by McMillan? for the charge-density-
wave state of the transition-metal dichalcogenides.

In the case of chromium, incommensurability
manifests itself in a relatively slow spatial modu-
lation of the basic antiferromagnetic structure,
the modulation period being approximately 25
lattice constants near the Néel temperature.?

The SDW state of chromium is thus inhomogene-
ous, and this paper argues that it is therefore
essential to assume that the free-energy density
is a function not only of the local value of the
order parameter, but of local values of other
variables (such as the local state of strain and
the local conduction electron density) as well, It
is true that the local electron density and strain
tensor can be found as functions of the order
parameter, and that the free energy can thus be
expressed as a function of the order parameter
only; however, when this is done the free energy
is found to contain what we call highly nonlocal
terms [see Eq. (9)] and thus has a radically dif-
ferent structure from what is usually assumed.
The proposed theory is thus substantially differ-
ent in its structure from previous theories.

The theory described below allows a second-
order (within mean-field theory, cf. Bak and
Mukamel?) transition to a linearly polarized SDW |

state and can thus describe the SDW state of
chromium. On the other hand, Shimizu’s ap-
proach allows a second-order transition only to
a helical SDW state [see the discussion between
Eqgs. (11) and (12)] and it was a desire to correct
this defect which provided the impetus for a re-
examination of the basic structure of the theory.

The spin density in chromium will be written
in the form

S(x) =n(x)S,(x), (1)

where So(i) describes the spatial variation of the
spin density of a commensurable antiferromag-
netic state and ﬁ()?) describes a relatively slowly
varying amplitude modulation of the basic anti-
ferromagnetic structure. The free-energy den-
sity at a given point X will be assumed to depend
on the order parameter ﬁ(i{’) and its spatial grad-
ients, the local state of strain as described by
the components e ,(X), e,(x), ..., e,(X) of the strain
tensor, and the conduction-electron density av-
eraged over a unit cell, p, (SE). Allowing the free-
energy density to depend on p,(X) and taking ac-
count of the fact that the strain fields e l(}?),

ceey eﬁ(;() are not all independent of each other
le.g., in arriving at Eq. (6) below] represent our
principal extensions of Shimizu’s approach.
Strains will be measured relative to the state at
the Néel temperature, Ty, in zero stress; also,
the conduction-electron density will be described
in terms of the variable e,=p,— Py, Py beINg

the value of p, at the Néel temperature at zero
stress. Thus, close to the Néel temperature, an
expansion in powers of the e¢,’s and n,’s yields,
for the Helmholtz free energy,

F=F,+ [@x{in,A(-iV)n o + iBn* + Ajreiit3c;ie e +3G e, n’), (2)

where the conventions o,B8=x,y,2; i,j,k,1=1,2,...

,6; 4',4',k",17=1,2,...,7;, and the summation

convention are used. F, and the coefficients appearing in (2) are functions of temperature only. The
nonzero values of the coefficients are easily found by symmetry arguments keeping in mind the cubic
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symmetry of chromium, the second-rank tensor
nature of the ¢;’s, and the scalar nature of e,.
The independent nonzero c;.;.’s are the three in-
dependent elastic constants of a cubic crystal,
C11, C12, and c,,, together with the constant c¢,,.
The independent nonzero values of the A;,’s and
G;’sareA,, A,, G,, and G,. The quantity
A(=iV) is given by

A=A, +A,0°+ A0 +A,"(6,4+ 6,4+ 0,9 . (3)

In writing (2) spin-orbit coupling effects have
been neglected, and the free-energy density is
thus a function of the quantity #n?=n 4n,=n(x)
-n(x) which is a scalar in spin space. Also,
since n(x) is slowly varying, gradients of the
terms in #* and e;.n® have been neglected. A
more detailed discussion® shows that these ef-
fects are indeed relatively small, although im-
portant for the interpretation of certain meas-
urements. Thus, the free energy of Eq. (2) al-
lows the principal thermodynamic properties of
chromium to be accounted for, while keeping the
derivations relatively simple.

Now write

e;r={e;)+0e; (4)|

F,= —%B”fn" d* +B"V,7! ffnz(z)nz(z Nddx d’ ',

the angular brackets denoting a volume average,
i.e., (e;»=V,"' [dxe,,, V, being the crystal
volume. Note that {e,)=0 since the number of
electrons in the crystal is assumed fixed. The
free energy thus becomes F=F, +F,, where F,
is F [of Eq. (2)] evaluated at e;,=(e;,) and

Fzzfdsx{éci,j,Oeiléej,+§Giléei,n2}, (5)

F, (and hence F) is now minimized with respect
to de, and to the displacement fields u, occurring
in Geyp=4(0uy/ x5+ dug/x ), giving

B[Caﬂyé6676‘*‘0046;7697'*‘%(;(157‘2]/8"8:0’ (6)

Cap;70€ap+Ce 06+ 3G n2— (n?)]=0. (7

The solution of Eq. (6) is simplified by assuming
that all quantities de;. and n, depend only on a
single coordinate, say z, as is appropriate for
chromium. With this assumption, 0e,=de,=de,
=0e,=0e;=0. Also, defining the 2 X2 matrix
s:® to be the inverse of the matrix C¢, Where s
and ¢ take the values 3 and 7 only, one finds

bey(2) = - £5, 2 G,[n% - (n?)]. (8)
Substituting (8) into (5) gives

(9)

where B”=}G s, G,. The last term in (9) will be called a highly nonlocal term; terms such as this
have not been exhibited in previous theories of incommensurable systems, but have been noted in a
discussion of the critical behavior of compressible magnets.® Such highly nonlocal terms have been
derived’ within the framework of microscopic theory (neglecting strains) by generalizing the method
of Malaspinas and Rice.? It is clear from (9) that one can not neglect the dependence of the free-ener-
gy density on local variables such as the e;.’s and still write the free energy as an integral of a local
free-energy density, as has often been done (e.g. in Ref. 2).

Now assume that the order parameter has the form

n(z) =8e %%+ §xeid2,

(10)

The Gibbs free energy per unit volume, G=(F/V,)-0,{e;), is now found, with use of (2), (8), and (10),

to be

G=Gy(T) - 30,5 ,;;0;

where s;; is the inverse of ¢,;, B,"=B~-3G;s,;G,,

and B,"=B - 3G,s,?G,; A, is given by (2) with
A, replaced by A,,=A4,~%A;s;;G,and § in the z
direction. A, can also be written A =a (T -=T y,),
T yo being the Néel temperature at zero stress.

If B,”>0 in Eq. (11) the helical state [e.g. §
=(S,, 2S,, 0)] is stable, whereas if B,” <0, the
linearly polarized state [e.g., §=(S,,0,0)] is
stable. Thus, to have a second-order phase
transition to a linearly polarized state as is ap-
propriate for chromium, one must have both B_”
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0,40;8;;A;+(A,+0;5,;G;)8-8§*+B,"(§-§9%+1B,"|§.§|?,

(11)

| <0 and B,’ +3B,"”>0; the definitions of B,’ and

B,"” given above allow this,

If the dependence of the free-energy density on
the conduction-electron density is ignored, as
has been done by Shimizu,* and as would be ap-
propriate for a description of a localized Heisen-
berg model, the derivations proceed along similar
lines, while now B,’=B - 3(G,?/(c,,+2c,,)] and
B,"=4|B-%(G?/c,,)]. Thus, if B,”<0, then B,’
<0 also (since ¢,, >¢,,) and it is not possible for
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such a model to have a second-order phase tran-
sition to a linearly polarized state or to describe
chromium,

A number of thermodynamic properties of
chromium can be evaluated by use of Eq. (11)
with B,;”<0and B,=2B,’+B,”>0. The Néel
temperature, Ty, is found by setting the coeffi-
cient of §-S* in Eq. (11) equal to zero; the stress
derivative of Ty is then found to be

aTN/80,=—a,"(s;; +25,,)G,, i=1,2,3, (12)

and 8Ty /80,=0, i=4,5,6. Since the Néel tem-
perature decreases with increasing pressure, G,
<0.° The average strain is found using (e ;)= - 3G/
90;. The thermal expansion coefficients a;
=8(e;)/ 9T have the discontinuities

i=1,2,3,  (13)

at the Néel temperature (the discontinuity in a
quantity is the value just above Ty minus the
value just below); also Aa;=0 for i=4,5,6. Thus
chromium should remain cubic (to a first approxi-
mation) below its Néel temperature and also Aq,
>0, both predictions being in agreement with ex-
periment.'® The compliance matrix below Ty,
s;; 7, can be found using s;; " =3{e;)/80;; the
discontinuities in the s;;’s at the Néel tempera-
ture are thus As,, =0 while

Aa;=-a,B;" (s, +25,,)G,,

(14)

The quantities in Eqgs. (12), (13), and (14) satisfy
the Ehrenfest-type relation

As,, = As;,==B"Y(s,, +25,,)2G,2.

A;(3Ty/80;)=-As;;. (15)

The experimentally determined values Aa~4
X1078 K~1,10 9T\ /80, = —3(8Ty/8p) = 1.7X10™° K
dyn ! em?,° and As;; =As;,=AE"})=-4x10"1®
dyn ! em? (Ref. 11; E is Young’s modulus) satis-
fy (15) to within a factor of 2, which is all one
can expect for a mean-field theory, such as the
present one, which neglects critical fluctuations.
As a final point note that the substitution of Eq.
(10) into Eq. (8) shows that a charge-density wave
and a longitudinally polarized strain wave at
wave vector 20 are predicted to accompany the
SDW of wave vector §, in agreement with experi-
ment.'? Furthermore, the amplitudes of these
second-harmonic waves are proportional to 5- 5
and their experimental observation'® is clear evi-
dence that the SDW in chromium is not helical
(since §+-S=0 for a helical structure). Shimzu’s

approach!® fails to predict the correct polariza-
tion of the strain wave.

The above theory has accounted for a number
of properties of chromium not previously ac-
counted for. A conclusion with regard to the prin-
ciples of formulating phenomenological theories
for incommensurable systems is that it is im-
portant to consider carefully what other local
variables (such as strains or electron density) in
addition to the order parameter, the free energy
should be a function of. These other local varia-
bles can be neglected only at the expense of giving
up the idea of a local free-energy density and in-
cluding in the free energy such intrinsically non-
local terms such as occur in Eq. (9), and per-
haps others. These comments apply not only to
the theory of the SDW state of chromium just dis-
cussed, but also to the widely used McMillan?
theory of charge-density waves, and it appears
desirable that the McMillan theory should be ex-
tended in a way similar to that described above.
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