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Theoretical evidence is presented that for temperatures so low that kB2' is much less
than. the rest energy of a soliton, the mean square displacement of a diffusing particle of
an infinite sine-Gordon chain behaves as t for times much longer than microscopic
times but much shorter than the soliton lifetime v. For times much greater than 7,
linear behavior is suggested. Finite-size effects are discussed in the context of recent
computer simulation studies.

PACS numbers: 66.30.Dn, 05.40.+j

The problem of the dynamical behavior of inter-
acting particles subject to interactions with a
heat bath which can be simulated by random
forces of the Langevin type has applicability to
a wide variety of systems in physics, chemistry,
and biology. ' One such nontrivial system with
essential nonlinearities is the sine-Gordon chain,
which consists of a chain of particles, each mov-

ing in a sinusoidal potential and interacting with
each other via nearest-neighbor spring forces.
We will deal with the simplest case, where the
natural length of the spring is equal to the period
of the sinusoidal potential. Though there exist
particular solutions to the dynamical equations of
motion of the system in the absence of random
forces, ' we still do not have an exact solution for
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the system in the presence of random thermal-
noise forces.

Schneider and Stoll3 recently published results
of a computer study of the dynamics of the sine-
Gordon chain in the presence of random forces
which indicated that the asymptotic long-time (t)
behavior of the mean square displacement (x')
of a particle was proportional to t' '. On the
other hand, exact solutions" for the chain of
harmonically coupled particles (and thus the sine-
Gordon chain with the periodic potential removed)
lead to a t ~' behavior. It is tempting to suggest
that the addition of a periodic potential to the
chain of harmonically coupled particles (thus
producing the sine-Gordon chain) cannot lead to
an increase in the exponent of t (from 2 to ~),
since the periodic potential should impede rather
than aid diffusion (as in the case of the single,
noninteracting Brownian particle' ). In other
words, we would expect an exponent of —,

' or less
instead of the exponent of +. However, the com-
bination of the periodic potential and the harmon-
ic coupling produce unique excitations such as the
"kink" or the "soliton. " One might think that the
sine-Gordon chain could exhibit surprising effects
contrary to one's intuition. Clearly, this system
deserves a more quantitative treatment.

In this paper, we produce theoretical evidence
that for the infinite sine-Gordon chain, at least
in the limit that the temperature T -o K, the
exponent remains equal to —,

' as long as the soli-
ton's fifetime is neglected. A finite lifetime T

leads, within our approximate model, to an expo-
nent of unity (i.e., linear behavior) for times» T.

In order for our model to be valid, we require
that k&T «E„ the rest energy of a soliton. This
inequality leads to a low soliton density n, . We
can neglect both interactions among solitons and
higher-energy excitations. Finally, we can as-
sume that a particle will oscillate in a minimum
of the periodic potential until a soliton passes by
and leads to the particle's jumping forward or
backward one lattice spacing. Diffusion of the
particles is thus governed by the diffusion of the
solitons, which can be treated as a system of
pseudoparticles of mass M, =E,/c, ', where c, is
the sound velocity along the chain. The assump-
tion of strong coupling (expressible as co»&boa,
where (Up ls the characteristic frequency of oscil-
lation of a single particle in the sinusoidal poten-
tial and a is the lattice constant, set equal to
unity in the paper) allows us to use a, continuum
approximation.

After presenting our results for an infinite
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chain, we shall present some results for a finite
chain and discuss their relevance to the recent
computer simulation work of Schneider and Stoll. '
In particular, one can qualitatively account for
their results on the basis of self -diffusion of par-
ticles governed by a combination of both freely
moving and diffusing solitons, in which case the
g' ' fit of their data would result from a mixture
of t' behavior and t behavior.

de Gennes's theory of reptation of a polymer
chain' is directly applicable to this model. It
will be shown to lead to the result

&x'&=n, & iy i &,

where y is the displacement of a single soliton in
a time t.

Equation (I) can be understood in simple terms
as follows: The solitons produce a random walk
in x, so that (x') equals the average number of
uncoxxelated jumps which have taken place in the
time interval 0 to t. Multiple back and forth
jumps produced by a single soliton are correlated
and contribute either one uncorrelated jump or
none at all (accordingly as the number of passes
is odd or even). The average number of uncor-
related jumps is equal to the number of solitons
which lie within a distance (~y~) from the given
particle —~, & (y[).

With a Gaussian distribution for y (which ob-
tains here),

&x'&=n (2(y')/~)' '

If the solitons are not damped, (y')~t' and (x')
The particles diffuse via a simple random

walk. When damping is ta.ken into account, (y')
behaves as 2D, t for times much greater than the
inverse damping rate (q ').' Here D, is the diffu-
sion constant of the solitons. Then,

&x') -n, (4D, t/~)'~' as t— (3)

According to Kawasaki, ' for low temperatures,

n, = (M, /m)(8E, /vk zT)' 'exp(-E, /k zT) . (4)

There have been a number of interesting recent
works' ' on the mobility of solitons in the pres-
ence of an external force acting on all the par-
ticles of the chain. If we assume the Einstein
relation between the mobility and the diffusion
constant to hold, they all lead to

D, = —,'wkBT/rtMO

for low T. This classical result confirms the pic-
ture of the solitons behaving like a gas of diffus-
ing independent particles of mass Mo.
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We thus obtain, in the limit t-~,

(6)

t. Finally, we will assume that solitons are re-
flected at the ends of the chain as antisolitons.

We find the following results:
(i) For free solitons (t«7} '),

This result should be compared with the exact re-
sult for the chain of harmonically coupled parti-
cles4'5.

n, Pt'/L, for t«7
n, v'rt/L, for t»7,

(9a)

(9b)

We note that Eq. (6) does n«reduce to Eq. (7)
in the limit that the periodic potential vanishes.
This result should not be altogether surprising
since our theory assumes that E,»k ~p.

While our results do not apply for intermediate
amplitudes of the periodic potential V~, it is
reasonable to conjecture that the exponent of —,

'
obtains for all finite values of V~.

So far we have neglected the effect of a finite
soliton lifetime r." Detailed calculations" with

a model which neglects soliton-soliton correla-
tions leads to (x')-n, (D, /~) ' t for t»7. This
result can be understood as follows: For large t,
the dominant contribution to (x') comes from
solitons which have been both created and destroy-
ed in the time interval 0 to t. The rate at which
solitons are created, per unit length of chain, is
given by n, /7. Those solitons which have an op-
portunity to pass the given diffusing particle
come from within a distance from the particle
equal to the mean free path (D, r)' '." Hence

(x') - (n, t/r)(D, 7) '~'

or
(x') -n, (D, /7)' 't (6)

Thus, for t«v, (x')~t~'. For intermediate
times t-r, the leading correction of the t' ' be-
havior goes as t' '. The exponent (-,') is close to
that of Schneider and Stoll (~3) but probably mere-
ly by coincidence because of the importance of
finite-size effects in their work.

We now discuss the effects of finite chain length
L. We will assume that I. is much smaller than
the mean free path l of a soliton. For freely
moving solitons (t«g ), I is given by v~, where
e is the average soliton velocity. For diffusing
solitons (t» q '), l is given by (D, v)' 2. The time
v~ which it takes for a soliton to traverse the
full length of chain is given L/v and L'/D, for the
two respective regimes. The inequality l »L
implies that 7»z~. We will further restrict our
attention to times t»7.~, so that a soliton makes
many traversals of the full chain length in a time

Result (9a) can be understood as follows: A
single soliton will traverse the chain t/7~ times
in a time t. The single (uncorrelated) jump dis-
tance in the random walk is given, then, by t/7 ~,
not by unity as it is for the infinite chain. The
total number of uncorrelated jumps for t «w is
given by the number n, L of solitons present at
one time. Thus (x') -n, L(t/r~)', from which (9a)
follows.

When t » v, the single-uncorrelated-jump dis-
tance is limited to r/r~ The. total number of un-
correlated jumps is now equal to n, L t/7. Then
&x') -n, L(t/7)(7./r, )' = n, v 7.t/L.

(ii) For diffusing solitons (t» g '),

(x')-n, D, t/L for all t. (10)

In the case t «~, this result can be obtained by
multiplying the number of uncorrelated jumps
(n, L) by the square of the single-uncorrelated-
jump distance (D, t/L2). In the case t » r, the
first factor is given by n, Lt/7', while the latter
factor is given by D, 7/L'. The form of the re-
sult is thus independent of t l

Interestingly, Eq. (10) may also be obtained
under the condition that the solitons die at the

This remarkable result follows from the
fact that in this case, the single-uncorrelated-
jurnp distance is given by unity, while the number
of uncorrelated jumps is given by n, Lt/7~ =n, Dg/
L. (Here it is assumed that solitons are contin-
uously being created all along the length of the
chain so as to maintain the equilibrium soliton
density n, .)

How does the finite-size work of Schneider and
Stoll relate to the above results 7 A number of
factors characterize their system:

(1) They are observing behavior over time
scales only a few times r~ (not t»r~) (See Ref..
3, Fig 3.)

(2) They have hBT/8, ~0.2. Thus, their system
may not be at temperatures so low that our ap-
proximate model can apply quantitatively.

(3) According to Ref. 3, Fig. 3, there is a sig-
nificant fraction of fast-moving (v close to the
speed of sound co) solitons which seem to propa-
gate freely, as well as a significant fraction of
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slow-moving solitons which seem to propagate
dif fusively.

(4) No soliton-anitsoliton annihilations are evi-
dent in Ref. 3, Fig. 3. At best, we can assume
that they are examining time intervals compara-
ble to T or less.

(5) There are only a small number of solitons
(-8) along the entire length of chain. Thus, the
statistics may be insufficient to apply results of
theories which neglect fluctuations in the number
of solutions.

As a first approximation, we may assume that
in the Schneider-Stoll work T~«t«T. Their re-
sults might be explained as follows: The freely
moving solitons will produce t behavior [see Eq.
(9a)], while the diffusing solitons produce t be-
havior [see Eq. (9b)]. A mixture of the two might
produce behavior which is close to t'~'.

In order to test the theory presented in this
paper, it would be worthwhile and interesting to
perform computer simulation calculations on a
sine-Gordon chain having parameters which lie in
the well-defined regimes characterized in this
paper.

We now outline the mathematical development
of de Gennes's theory. ' We work with his dis-
crete model and transfer over to the continuum
afterwards. Let P(m, t) be the probability that a
particle has moved m spaces in a time t. Let

(

gamp&

Q P(m t)et 0'

With a low soliton concentration,

(e imP& ((e smg»Ns

where N, is the number of solitons among a col-
lection of N particles and the double angular
brackets (()) represent an average, assuming
only one soliton is present. Now, one soliton can
lead to m = 0, +1 only. Thus,

&( '"'»=p„+p„„+ "p,„+ -"p„„
where p» equals the probability that the soliton
started to the left of the particle and ended up at
time t to the left of the particle, etc.

We let p„(t) be the probability that a soliton has
traveled n spaces in a time t. Then,

p„=p„=N ' Z p. .(t) =-.'-(»)-'Z. lnlp. (t),
n~m &0

pt. =p.~=N ' Z p.— (t)
n &0
m&0

=(») 'Z lnlp. (t) =(2N) '&lnl &. (14)

((e ™~&&= 1 —N '(1 —cos y) ( l
n l &.

In the limit N„N —~, with n, =N, /N,

&e ™~&=exp[ —n, (1 —cosy) & Inl &],

from which it follows that

p(m, t) =exp(-n, (lnl &)I (n, (lnl)) (17)

(m &=n, &lnl&, (18)
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