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Solvable Model with a Roughening Transition for a Planar Ising Ferromagnet
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An exactly solvable modification of the planar Ising ferromagnet is proposed which has
a roughening transition below the Curie temperature. The computation confirms the
de Gennes-Fisher scaling theory of correlations with homogeneous surface fields, giving

1an exponent value ~
&

= 2.

PACS numbers: 05.50.+q, 75.10.Hk

The nature of the interface, or domain wall,
between oppositely magnetized phases of a ferro-
magnet below its Curie temperature Tc has been
the subject of considerable recent interest. ' ' It
has been realized that, even though there exists
a well-defined specific incremental free energy
for a domain wall, ' ' in many situations the ac-
tual structure of such a wall is averaged out by
capillary fluctuations unless some external sta-
bilizing force is applied.

A phenomenology which is generally accepted
is that the domain wall may undergo large fluctua-
tions on a length scale determined by the area of
the interface, but carries with it a local struc-
ture which, in the critical region, varies on the
scale of the correlation length. It is to this local
structure that the successf ul phenomenological
theory developed by van der Waals, by Cahn and
Hilliard, and by Fisk and Widom' refers.

The following remarks relate to simple-cubic
Ising ferromagnets in d dimensions. For d =2,
the interface between phases with magnetization

+m*, m* being the spontaneous magnetization,
is always diffuse for 0&T &Tc ', Tc" is the d-
dimensional critical temperature. ' For d = 3,
however, it is proven that for 0 ~ T & Tc ' the
interface is sharp'; there is, however, a temper-
ature T&-Tc ' such that for Tc ' & T & T& the in-
terface is diffuse. A toughening transition is
said to occur at T~. The evidence for this, which
is not beyond dispute, deprives from series ex-
pansions' and Monte Carlo simulations. ' A rig-
orous proof that there exists a T~ & Tc " has yet
to be given.

In this paper an exactly solvable modification
of the planar Ising model will be given which has
a mechanism which localizes the interface at low
temperatures and which has a roughening transi-
tion at a temperature T~ & Tc ' whose properties
can be investigated rigorously in considerable
detail.

Consider a lattice A(N, M) of points (n, m) such
that 1 ~n ~ V, 1 ~ m ~M. At each such point
place a spin o(n, m) =+ l. A configuration of spins
on A(N, M), denoted by (0) has an energy

M N 1

E~({cr))= —Q [J, Q v(n, m)g(n+1, m) +Z,o(1,m)o'(2, m)
m= 1 n =2

+Z, Q o(n, m)o(n, m +1) +h(m)o(l, m) +h'(m)o(N, m)]
n=1
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with normalized canonical probability

& (( ])=Z ' p[-P&.(( ])], (2)

E(x, 2s) = lim lim (o(x, 2s))~.
N~~ N ~~ (3)

When J, =J, the following results are known":

limE(x, 2s) =m (x), (4)

where m (x) is the magnetization at a distance x
from a wall with h (i) = - ~, and m (~) = -m *.
The +m* state is attained by scaling x with s:

where p =1/k BT, kB and T being, respectively,
Boltzmann's constant and the absolute tempera-
ture. The boundary condition a (n, M +1) =o(n, 1)
is imposed in (1). The Z, & 0 are ferromagnetic
coupling constants, and the h(i) and h'(i) are
boundary fields. Thus a cylindrical lattice is con-
sidered with a seam of misfit J, horizontal bonds
adjacent to one surface.

In this Letter two types of boundary conditions
will be considered:

8: h(i) =h'(i) =+~ for alii

(this selects the +m * eztremal state in the ther
modynamic limit M - , then N - , where m * is
the spontaneous magnetization which vanishes for
T T,(')); and

a: h '(i) = , h (i) =
I

In the contour, or low-temperature-expansion,
language we have a long contour y, beginning at
(l, a) and ending at (l, s+a). Note that when h(i)- ~ the spin at (2, i) is equivalently subjected to
a magnetic field K,.

Consider the magnetization profile defined by

and energetic stabilization. The new result of
this Letter is that there is an associated phase
transition. Define K, = J, /kBT, &=0, 1, 2. Let
Ts(a) be the nontrivial solution of the equation

exp(2K2) [cosh(2K, ) —cosh(2aK, ) ]

= s inh(2K, ) .
Note that Ts(a) decreases from Tc(') to 0 as a
increases from 0 to 1. When Tc (') & T & T~(a) re-
sults analogous to (4) through (7) obtain except
that m (x) refers to the case Jo g J,. But when 0
&T &Ta(a) we have

lim E(x, 2s) =m, (x)[l+h(x, T)],
S

where h(™,T)=0, h(l, T)=-2. Near T~(a), h(x, T)
has x scaled by a new length $, ~(T'„—T)-'. The
phase diagram is shown in Fig. 1.

The incremental free energy of the domain wall
is given by

r = —lim (s 'ln[Z (s)/Z ]), (10)

where the partition functions are the appropriate
normalizers of (2). This quantity takes the usual
Onsager value for Tc~') &T &T„(a),"'"but the
second temperature derivative, or domain-wall
specific heat, has a jump discontinuity at T„(a)~

The dual of the partition-function ratio is a cor-
relation function p(s) for a pair of spins at a dis-
tance s along an edge of a half-planar lattice with
enhanced bonds along the edge. Associated with
the incremental-free-energy singular ity there is
a change in asymptotic behavior of p(s) from an
essentially one-dimensional behavior with T
& T~*(a) to normal d =2 behavior" when TJ') & T
& Ts*(a). [The temperature Ts*(a) is related to
T~(a) by the dual transformation. ] This observa-

limE(o. s, 2s) =
g~ 00

-m+, 6&2l

+m*,

=m *g(Do.), 6 = 2, (6)

where D' = 2(cosh2K, —cosh2K, *), K, =J,/k &T,
exp(2K, *)= cothK» and

g(x) =1 —(4/~~)[x exp(-x') + f„ezp( u') du].-

2-

These results show that the long contour yo fluc-
tuates sufficiently to reduce the probability of y,
being nearer than s' to the boundary to zero as

QQ

Suppose now that Jo=aJ, with 0&a &1. In this
case yo is attracted to the line x = —,

' establishing
a competition between the entropy of wandering

»66

.5
FIG. 1. Phase diagram for roughening transition.

Plot of k&Ts(a)/J against a from solution of (8). The
intercept at & = 0 is &ETC /J. {kqT/J, a)'points under
curve correspond to a bound domain wall.
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tion lends support to the existence of special surface states. " Details of the associated crossover
phenomenon will be published elsewhere.

It may prove possible to investigate the phenomenon described in planar uniaxial ferrornagnets b"
using suitable surface fields. There may also be analogous phenomena in binary mixtures.

With use of the transfer-matrix theory and recently developed techniques" it can be shown that, for
7& Tc~

m, (x) = Q (2, (2,„ f, ~ ~ ~ f, d(u)), „M (o((u),„)M((cu),„)exp[-x Z y(~, ) ]

where (~)„ is an n-uple and y(&u) is Onsager's function" given by

cosh [y(e) ] = cosh2K, *cosh2K, —sinh2K, *sinh2K, cos ~

with exp(2K, ")= cothK, . The factors M are defined recursively by

28

M((a)),„)= P (-1)'f((u, (u, )M(S„((u),„),

(12)

where b,„(cu),„ is (&u),„with v, and &u, omitted, and

1 g(&,)
exp[i((u, + (u,) ]—1 g( —(u, ) g( —(u,)

In the above

g((u) = [(e ' —A)/(8'" —B)]~'

(i4)

with A = cothK, *cothK, and B = tanhK, *cothK, . The boundary condition on the recurrence is M(p) = m*.
Mo((~),„) has an analogous definition except that f is replaced by

f,((u„(u,) = H(u), + ~,)B((u,)/A((u, ),
where

m, (x) = m+a(xy(0), K,),
where as usual 1/y(0) is the correlation length and K, is the scaled magnetic field: K, =K,t ~' with t
=(Tc —T)/Tc. This establishes the prediction 4, = —,. The function I' is given explicitly by the calcu-
lation.

To develop the boundary condition the procedures of Ref. 6 are used. This gives

(20)

A(u) = (cosh2K, "—sinh2Ko*cosa) exp(K, ) cos 25*(u) + sinh2KO* exp( —K,) sin&@ sin2 5"(u), (iv)

B(u) = (cosh2KO* —sinh2K, *cosa) exp(K, ) sin —,'5*(u) —sinh2KO* exp(-K2) sinu cos 2 5*(&a&), (18)
*( ) [(e~ A)(ei~ B )/(e;-A i)(e~w B)]x/ (B/A)g2 M (~) (is)

This allows one to confirm an important recent conjecture of de Gennes and Fisher": In the critical
region m, (x) has the scaling form

E(x, —,'s) =m, (x)+[Z (s)/Z, ] Q Q t)(j, k) f ~ ~ ~ J d((u), „exp[-,'i((u, +o)„)s]
n =1 gyk=l

xexp( —,'i[0"(&u, )+6*(&u,)]) [A(~, )A(&u„)] '
M(oh, , ((u),„) M(((u),„),exp[ —xPy(u&, )], (21)

where 8( j, k) = (1 —6,~) sgn( j—k) and with

I

Z~(s)/Z, = 5(s)+7) ' J dree" C(~)/A(cu), (22)

iC(|u) = (cosh2KO*+ sinh2KO* cosa) exp(-K, ) sin 25*(~) + sinh2K, *exp(K2) sinu cos 2 5*(u) . (23&

The limit s —~ is taken in (21) and (22) by looking at the singularities in cu, and &u„ in the complex
plane. There are branch points at e""=B,A. In addition, A(u) has simple poles at &u=ivo+2ygw,
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n=0, +1, . . . , where

cosh vo = 2(B+1/B) +1 —s(w+ 1/w), (24)

w = exp(2', )(cosh2X, —cosh2K, )/sinh2K, . (25)

In addition the poles must satisfy

sinhy((u) = —,'(w —1/w),

so that on the physical branch of y(u&), for which

y(cu) & 0 on [0, 2m], there a,re no poles if w & 1.
Consequently, the pole dominates the asymptotics
in s when sv &1, which defines the region 0 T
&T„(a), from (8). Note that y(iv, ) &0 so that the
integral in (21) decays to zero as x - ~ on a length
scale 1/y(ivo), which is a new feature encounter-
ed in this problem. For T c(') & T & T„(a) the
branch point at e' =B ' dominates giving results
(5) to (7). Note also that the domain-wall free en-
ergy defined by (10) has the value lnB for Tc(')
& T & Ts(a) but the value i v, i from (24) and (25)
for T &T„(a)

We may interpret the phenomenon in terms of
the nucleation of a droplet of opposite phase by
a modified boundary fugacity in a region length s;
for T &T~(a) the amount of entrained matter is of
order s, whereas for Tc( ) & Ts(a) it is of order

3i2

When we take the solid-on-solid, or Onsager-
Temperley, limit" J,-~ with J, = J, —b, a phase
transition persists whenever b )0, but pc('i- ~.
The high-temperature phase is dominated by
capillary fluctuations which can be understood by
applying central-limit-theorem ideas' to the usual
low-temperature expansion. The mechanism of
phase transition is different from the d=3 solid-
on-solid case; there the interface is bound at its
perimeter and a simple Peierls argument" en-
ables one to understand fluctuation damping and
the finite mean square fluctuation of the sheet at
low temperature; in the high-temperature region
height conservation around closed loops still
damps effectively producing a non-Gaussian re-
sult and a phase of Kosterlitz-Thouless type. ""
Probably T = ~ is a singular point at which Gauss-
ian fluctuations are recaptured.
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