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for the @CD vacuum. This point could be demon-
strated in the same way that it has been done be-
fore" with the group SU(2). This issue will be
discussed in detail in a forthcoming communica-
tion.
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I et 0~(Q, s) be the total cross section for scattering of meson P on some target, with
—Q the off-shell mass of P. It is shown that, when —Q & m& (the physical P'mass),
quantum chromodynamics suggests that, as the c.m. energy squared s approaches ~,

oz(Q, s) -Cg(Q)s +..., A. ) 0,

where f(Q ) is calculable for large Q . This is compatible with the Froissart bound, but
only for on-shell particles, provided f (-mz ) =0. It is shown that there is experimental
evidence supporting such behavior.

PACS numbers: 11.20.Fm, 12.40.Bb

Let oz(Q', s) be the total cross section for scat-
tering on some target of the off-shell projectile
P (say, a meson) with (unphysical) mass —Q', s
is the square of the c.m. energy. Usually, the
Froissart bound is assumed for 0, and hence its
high-energy behavior is taken to be controlled by
the Pomeron. However, all proofs of the Frois-
sart bound require unitarity' and therefore there
is no reason why it would hold away from the
mass shell. In this Letter we will argue that

quantum chromodynamics (QCD) strongly sug-
gest a behavior of the type

v~(Q', s) - C,f(Q')s + C p, (Q'), (1a)

where X is strictly positive and where, for suffi-
ciently fgrge Q' that perturbation theory be appli-
cable,

f(Q') = [~ (Q')) "+'"' (1b)
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(2)

a,(Q') = 12m/(33 —2n&) ln (Q'/A') is the usual QCD
running coupling constant and d+ is calculable in
terms of X (see below). Actually, from QCD one
can only prove that v~(Q', s) grows faster than
any ln"s, for large enough Q'; and, indeed, be-
havior of the type

&p(Q', s) =g'(Q')(»s)' exp[&(Q')(»s)' ']

has been considered in the literature. ' Equa-
tions (1) follow if we assume a Regge-type charac-
ter for the leading singularity; the arguments in
favor of it will be discussed later on, and we now
turn to the proof of (1), considering a typical ex-
ample. Let us take a p meson whose width we ne-
glect, and use as its interpolating field the cur-
rent 4"=fzuy"d. The off-shell cross section for
pp scattering may be defined by the formula'

(3)

e (Q', s) =KE,(x,Q'),

where K is a known coefficient and E, is the usual deep-inelastic structure function. Let us assume
Hegge behavior for a&, or, equivalently, ' that as x -0 one has the behavior

~,(Q', s)=,i, », 5 & *(q)e..(q)f&'~s" *(q' m-, ')'(pl[~" (~)', J"(0)]Ip),s~- ymp g spin

where q is the four-momentum of the p snd Q'=- -q'. We will consider the limit s,Q' large but x =Q'/s
small. In this situation we have

x -+0
(4)

which corresponds to oz(Q', s) ™p(Q')(Q') "s ', where n is the intercept of the leading Regge tra-
jectory and a=1+X. One could also introduce Regge cuts in the form of (finite) powers of lns; since
they alter nothing essential, we will stick to (4) as it stands.

First of atl, it is not difficult to see that only the singlet piece of E, is relevant as x - 0. We then
consider the standard quark singlet (i =S) and glue (6) moments,

p, (n, Q'.) = f,dxE„.(x,Q'g" '.

It has been proved from @CD that one has'

p,,(n, Q') =Q, i[expp(Q, ', Q')D(n)];, p;, (n, Q,'),

where p(Q, ',Q') = ln [n,(Q,')/n, (Q')] and

(6)

3nf n +n+ 2

8 n(n + 1)(n + 2)

n +n+2
2n(n' —1)

9 9 33 —2ny SS,(n)
%(n 1) 4(n +-l)(n + 2) 16 4

n 1 1

The last expression defines S, for arbitrary n; with it, Carlson's theorem assures us that Eqs. (6)
and (7) remain valid for noninteger (even complex) n. Moreover, D(n) becomes an analytic function of

n to the right of Rem=0 except for an obvious pole atn=+1.
According to Eqs. (5), the p, ,(n, Q') will diverge as const/e when n-I +X, ( Q')+ .sBut since all the de-

pendence of exppD in Q' is contained in p, Eq. (6) implies directly that X~(Q') =X~(Q') =X independent of
Q'. Moreover, since D(n) is singular for n =1, but not to the right of this point, it follows that 1+%.+~
cannot be smaller than 1 for any & )0: hence, X ) 0. To exclude the case A. = 0 is easy. If we had (8)
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with X,. =A. = 0, substituting into (5) and (6) with n = I+a, we would get

1 (r~(Q')i ig, (Q.')i
=—Iexp [pD(1+ e )j I

(r, (Q')/ (a.(Q.')1

o ) (s,(q.*))
Uq

[Q (Q 2)/n (Q2)]&-'u+ ~)) (g (Q 2))

which cannot be satisfied when e -0 because D(l+e) diverges as 1/e. This finishes the proof that
Xc(Q')=A. ~(Q')—= X&0. To complete the proof of Eq. (4), we let d+(1+X) be the largest, d (1+X) the
smallest eigenvalue of D(1+X), and U~ the (numerical) matrix that diagonalizes D(1+X). As Q'-~,
and wit hn =1 +X +e, E-0, Eqs. (6) and (7) give

[n (Q 2)/n (Q2)]d+(1+ k)

from which the behavior

F,(x,Q') =a[n, (Q')] '+"'"x ', X&0, (&)

and hence Eqs. (1) follow directly to leading or-
der in QCD. This result, Eq. (&), is interesting
on its own for analysis of deep-inelastic struc-
ture functions. The corresponding implications
will be presented elsewhere, ' and we turn back
to the problem at hand.

Clearly, the key assumption of our analysis is
the Regge-type behavior, Eq. (4). To trace it,
we consider that the moments of a structure func-
tion are given, "in shorthand notation, by

t (~,Q') =C„(Q'/t ', n. )(plO "lp),

where the C„arecalculable in perturbation theo-
ry and the matrix elements of the local operators
(0") embody the unknown, nonperturbative had-
ronic structure. The right-most singularity of
C„is at n = 1, for singlet functions (n = 0 for non-
sipglet ones). If the right-most singularity of
(PIO" IP) is to the right of this, we will have a
Regge behavior; otherwise, we will obtain some-
thing like Eq. (2), as in Ref. 2. For the nonsin-
glet case there is little doubt that we have the
singularity of (plO„,"Ip) to the right of that of C„"',
and hence Regge behavior (the p trajectory); we
assume the same to be true for the singlet one.
Actually, there are some cases in which the con-
finement problem does not arise and then one can
compute (plO" Ip). This occurs for scattering on
photon targets where Witten' has proved a behav-
ior precisely like (4) with A = 0.6 independent of
Q' except for a slight variation with the number
of flavors. Although Witten's result only refers
to the pointlike piece of 0, it certainly lends sup-
port to our hypothesis.

Another point is that our results have been ob-
tained working only to leading order in @CD. That
the exponent X is independent of Q' and strictly
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FIG. 1. Fit with Eq. (9), C~~
——1.40 pb, s in GeV

(solid line) . Dashed line: Opo~. Data from Armstrong
et al. (Ref. 11), solid black dots and Caldwell et gl.
(Ref. 11), open dots.

l positive may be verified to hold also to second or-
der in QCD, as it only depends on the fact that
D(n) has a pole at n = 1, and none other to the
right of Ren = 0. For this, one uses the recently
found analytical expressions of D(n) to second or-
der': Only the expression for f(Q'), Eq. (2b), will
be altered by O(n, ) terms. It is likely that this
be valid to all orders in perturbation theory, but
we are aware that the extension to small Q' is a
nonperturbative problem. All we can say in this
respect is that in the nonsinglet case, nonpertur-
bative effects do not appear to spoil the constancy
of the exponent, and so perhaps this is also true
in our case.

To finish with the theoretical discussion, we
want to comment on the relevance of our results
for the Froissart bound. Equations (1) only hold
for Q' large enough that perturbation theory be
valid, and hence they pose no threat to the Frois-
sart bound provided f( -m2~) =0. It is clear that
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1.2-

Fz =f -(7„/TT

where I', ' is the usual neutrino structure func-
tion. The reason for the above identification is
Adler's theorem" that states that, if we neglect
the pion mass, o „(O,s) coincides with the total
physical pion cross section. Hence, we expect
that

o,(Q', s) —o „(-m „',s) = C„s~,

0 40 80 120 160 s(Ge V2)

FIG. 2. Fit with Eq. (10), V~„=01 n7/f ~, s in GeV
(solid line). Dashed l. ine, physical pion cross section.
Open data points, BEBC data; solid data points, CDHS
data (Ref. 13). Squares, Q =1.75 GeV2; triangles, Q
=1.25 GeV . The solid dot is a point at Q = 0.15 GeV,
included to show the compatibility between v data and

physical n data (Adler's theorem).

and we have neglected the variation with Q' of the
second term in Eq. (1a). The agreement with ex-
periment (at Q'-1.5+0.25 GeV'; see Fig. 2) is
as good as the quality of the data" permits. Both
fits were made with X=0.4, but results practical-
ly as good are obtained provided 0.3- X - 0.6.
Certainly, one cannot argue that the quality of the
fits proves the behavior of o given by Eq. (1); but
these results, together with those gathered in
Hef. 7 for electroproduction at large Q'& 4 GeV'
using the behavior found, Eq. (8), constitute evi-
dence that, at least, the conclusions of this note
are supported by experiment.

one cannot use expression (1b) below, say 2 GeV',
but it is certainly encouraging that, as calculated
here, f diminishes as Q' decreases, suggesting
the existence of a zero for IQ'l™A'. The mecha-
nism that generates this zero is of course un-
known in detail, being of a nonperturbative na-
ture, but one may guess that it is related to the
unitary iteration of the starting Begge behavior.
In fact, as is known, in Gribov's Reggeon calcu-
lus one starts from an amplitude with a leading
trajectory with a~ (0) & 1; unitarization then brings
the actual behavior to one dominated by the usual
Pomeron.

To conclude, we want to present a preliminary
comparison of Eqs. (1) with experiment in two

typical cases. First, we have Compton scatter-
ing: Since we are working to lowest order in
electromagnetic interactions, we could well have

o( Q', )s,
- C„f(Q')s'+C..(Q'),

where f(Q') vanishes at Q'= —mp', but not neces-
sarily at Q'=0. The value of Cp (0) is approxi-
mately given by" (o „+p+o, -p)/440; A, may be ob-
tained (since it is independent of Q') from small-
@ fits to deep-inelastic structure functions, where
one finds' ~=0.3 to 0.5. The quality of the fit to
all data" with only one parameter, C,z =C, zf(0),
is excellent (Fig. 1).

The second example is the cross section

&~(Q', s) =(&/f.')F."(Q'/s &2s), f.=0.95~.,
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Isotope-selective laser excitation has been used to study e'xcitation exchange in colli-
sions of helium Rydberg atoms with ground-state helium; this process is dominated by
the interaction of the ionic core with the neutral atom and proceeds at the charge-exchange
rate, the excited electron remaining a spectator.

PACS numbers: 34.50.-s
Recent experimental results (Devos, Boulmer,

and Delpech, ' designated as 1 in what follows) sug-
gest that neutral-induced collisional transfers be-
tween Rydberg levels of an atom involve the
three-body interaction between the ionic core,
the Rydberg electron, and the neutral perturber.
We report here a more detailed study of this in-
teraction; isotope-selective laser excitation has
been used to study excitation exchange in colli-
sions of helium Rydberg atoms with ground-state
'He and 'He and to show that this process is dom-
inated by the interaction of the ionic core with
the neutral atom and proceeds essentially as a
charge-transfer reaction, the excited electron
remaining a spectator.

The present study was carried out in a room-
temperature helium afterglow at a pressure of
2.6 Torr. Its basic features are carefully diag-
nosed (see I and Delpech, Boulmer, and Steve-
felt' ): The role of the discharge is simply to cre-
ate a large enough population (= 10"cm ') of
metastable helium atoms. At the time of the la-
ser pulse the electrons are swept out by a micro-
wave heating pulse", their density is below 10'
cm ' and thus collisions involving electrons re-
main always negligible here compared to those
involving ground-state atoms (their respective
rate coefficients have been reported in I).

Rydberg He(9'P) atoms are produced by laser
excitation; after frequency doubling, the dye la-
ser delivers 3-ns, 1- to 6-pJ pulses at a repeti-
tion rate of 25 Hz. The wavelength is pressure
tuned around 2696 A with a resolution of 0.3 A;
either 'He(2'S-9'P) or 'He(2'S-9'P) is selectively

populated with excellent rejection, as they are
separated' by 12 A.

As noted in I, l sublevels reach statistical
equilibrium in a time short compared to the du-
ration of the laser pulse; in what follows, states
will thus be designated simply by their principal
quantum number p. The population of either
'He(p) or He(p) is monitored by transient fluo-
rescence by means of a coupled holographic grat-
ing monochromator and Fabry-Perot etalon of
1.35-cm ' free spectral range with a finesse of
5; the multiplet structures of the two isotopes
are well separated with this combination.

At low energies, below about 2 pJ per laser
pulse, the population density [He(9)] of the p =9
level increases linearly with laser energy and
collisional transfers play a dominant role in the
population of all other levels, as described in I.
However, above this energy threshold, [He(9)]
begins to saturate while [He(8)] increases faster
than would be warranted by purely collisional
transfer: Cooperative radiative phenomena' '
begin to play a substantial role. When the ener-
gy of the laser reaches about 6 pJ under our ex-
perimental conditions, superradiant transfer be-
comes so fast that both [He(8)] and [He(9)] reach
their maximum during the laser pulse (Fig. 1);
collisional transfers retain, however, a domi-
nant role in the population of all other levels, in-
cluding [He(7)], and their population densities (as
deduced from their fluorescence intensities) re-
main small, at early times, compared to [He(8)]
and [He(9)].

Conceivably, one could populate simply a given
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