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Colored Monopoles
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A complete set of the pointlike monopole solutions for the group SU(3) is presented
which can describe arbitrary allowed magnetic charges. The method adopted to con-
struct the solutions makes use of the topological structure of the non-Abelian symmetry
and could be applied to an arbitrary gauge group G.

group. The magnetic symmetry has been intro-
duced as a set of self-consistent Killing vector
fields of the internal (i.e., the group) fiber space
which restricts some of the dynamical degrees
of freedom while keeping the full gauge symmetry
intact. One of the virtues of the magnetic sym-
metry for our purpose is the fact that it is best
suited to describe the topological structure and
thus the monopole solutions of the underlying
symmetry group. Although this point has been
demonstrated before' with the group SU(2), I will
argue in this Letter that this is true for an arbi-
trary group Q by showing that a proper magnetic
symmetry applied to SU(3) can provide us with a
complete set of the iaonopole solutions.

I will start by briefly reviewing the magnetic
symmetry. " Consider the higher -dimensional
unified metric formulation" of the gauge theory
and let $, (i = 1, 2, . . . , n) be a set of internal
Killing vector fields that satisfies the canonical
commutation relations of the isometry group G,

The existence of these Killing vector fields at
each space-time point guarantees us the gauge
symmetry. A magnetic Killing vector field m

is then defined as an additiomi Killing vector
field which is internal,

(2)m =m'$, ,

and which commutes with $, ,

[m, «, ]=0 (i=i, 2, . . . , n).

From (2) and (3) it follows that the multiplet m

defined by

m'

m2

m"

forms an adjoint representation of the group. In
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Non-Abelian gauge theory has become well
known to have nontrivial topological structure'
intrinsic to the symmetry group. The topological
structure could be exhibited as classical solu-
tions' of the system which carry nonvanishing
magnetic charges conserved for topological rea-
sons. In the meantime the possible physical im-
portance of the topological structure and the cor-
responding classical solutions of non-Abelian
theory in connection with the color confinement
in quantum chromodynamics (QCD) have been
emphasized by many authors. " Indeed, based
on the group SU(2), it has recently been argued
that the topological structure and the monopole
solutions expressed in the form of the magnetic

symmetry play a crucial role to establish the
duality" which exists in non-Abelian gauge theo-
ry and to provide us with the magnetically con-
densed vacuum necessary for the confinement of
color in QCD. Thus it is desirable to obtain all
the monopole solutions for the color gauge group
SU(3) and to clarify how these solutions exhibit
the topological structure of the group. Although
a large volume of the literature already exists
on this issue, ' a complete set of solutions for
arbitrary allowed color magnetic charges has so
far not been obtained. The purpose of this Letter
is to construct such a complete set of the mono-
pole solutions for QCD and to clarify their topo-
logical meaning.

Since it is unlikely for one to obtain the de-
sired solutions just by studying and solving the
equations of motion, I will choose a completely
different tactic to attack the problem. Instead
of solving the equations of motion, I will first
examine the topological structure of non-Abelian
gauge symmetry in detail and show how one can
construct the solutions directly by making use of
its topological properties. To achieve the goal
it is crucial to understand that non-Abelian gauge
symmetry allows an additional internal symmetry
called the magnetic symmetry, "which can mani-
fest the topological structure of the symmetry
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terms of m the Killing symmetry assumption"
can then be written as

Bum= Bpm+gBpxm
(4)

(sin8cos(ny) )
sin8sin(ny)

cos8
(6)

where n is an integer, 8 and y are the angular
spherical coordinates of 5„', the two-dimension-
al sphere of the three-dimensional space, and t,.
(z = 1, 2, 3) are the adjoint representation of the
SU(2) generators. Clearly the above m describes
all the possible homotopy class of the mapping
v, (S ) such that

where B„is the gauge potential of the group 6,
when the internal metric is the Cartan-Killing
form. This implies that one can always normal-
ize m to satisfy m'= 1, which we will do in the
following.

To show the importance of the magnetic sym-
metry for our purpose let us briefly review how'
a proper choice of the magnetic symmetry can
provide us with a complete set of the monopole
solutions for SU(2). For the group SU(2) there
can be only one (nontrivial) magnetic Killing vec-
tor m, Because of the assumption (4) the gauge
potential must have the form

Bp=A„m-g 'mx„m,

where A& is an Abelian potential which is not
fixed by the magnetic symmetry (4). Now let us
choose

m=exp(-nest, ) exp(-8t, )(,

particular for SU(3), by imposing a proper mag-
netic symmetry to the potential. For SU(3) the
relevant homotopy group is &,[SU(3)/U(1) 8 U'(I)]
so that

or

g =g '(n —,'n'), —

g '= —,'v3(g 'n'),
(1O)

where n and n' are integers. Then, our task here
is to construct one monopole solution for every
set of integers n and n' by finding a proper mag-
netic symmetry which could manifest the map-
ping, ' and then by imposing the symmetry to the
gauge potential. For this purpose we first ob-
serve that if mz and mz are fzvo &illing vectors
the self-consistency requires that —not only their
antisymmetric product (i.e., the f product) m,
x m, but also—their symmetrzc product (i.e , the.
d product) mz *m~ has to be another IA'fling vec
to~. Here we denote the symmetric product by +.
This observation follows from the following sim-
ple identities

D&(m, xm, ) = (D„m,) xm, + m, x(D„m,),
D„(m, +m, ) =(D„m,) *m, +m, ~(D„m,) .

From this it becomes clear that a magnetic Kill-
ing vector m a&tomatically generates another
one m',

~,[SU(3)/U(I) e U (1)]= ~,[U(I) N U (I)], (9)

where U(1) SU'(I) is the two Abelian subgroups
generated by X, and A.„so that the monopoles
must now be classified by two integers. The gen-
eralized quantization condition can be written as"

exp[4wig( 2z,g-+y.,g ')]= 1

m: &s' -8 = SU(2)/U(l), m'=v3m*m, (12)
with the homotopy class Z=n. Now it is a trivial
matter to confirm that the potential (5) with A„
= 0 and rn given by (6) describes a complete set
of the pointlike monopole solutions for SU(2). In
fact, the corresponding field strength G„„ is
given by

6 &„=-(n/g) sin8(s„88, y —8„8s„y)m,

which describes the monopoles with the magnetic
charges g„=4vn/g. The topological meaning of
the solutions in connection with the magnetic sym-
metry m has been emphasized before. '

From the above example it becomes clear that
one may be able to find a complete set of the
monopole solutions for an arbitrary group, in

unless m' is equal to m. Obviously for a complete
set of the monopole solutions two Killing vectors
m and m' are necessary and sufficient. Further-
more, one can show that one may choose the
fundamental symmetry m to be always Xz-like, in
zvhich case the product symmetry m' automatical-
ly become. es ~z-tike. The potential that satisfies
the condition (4) should then have the following
form

Bp =A& m+A&'m' —g 'm x ~&m

-g m'x Bpm',

where A„and A„' are the components which are
not fixed by the condition (4). Now we have to
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choose m in such a way as to exhibit the full
homotopy class of the mapping (9). Let m be

m= exp[ —n'y( ——,'t, + —,'~3t, )]
xe "~exp[—(n ——,

' n') pt, e "-2]j, , (i4)

where t, (i = 1, 2, . . . , 8) are the adjoint representa-
tions of the SU(3) generators. Clearly the m ex-
hibits the homotopy class which consists of n

windings of the i-spin subgroup followed by n'
windings of the u-spin subgroup of SU(3), and
thus makes an obvious candidate to represent the
mapping. ' Explicitly, we find

A„= ——,'(n'/g) sin'88&cp, A&'-—0. (i6)

Indeed, after a straightforward calculation one
can show that the potential (13) with (15) and (16)
can be gauge transformed to

B„-g '[(n ——,
'

)n&, '+&3 n' $,] sco88„q (i7)

[up to the residual U(l) SU'(1) gauge degrees of
freedom] in the magnetic gauge where m and m'
become space-time-independent $, and $,. Al-
though in the magnetic gauge the potential (17)
appears to have the string singularity along the
z direction the smoothness of the potential (18) in
the original gauge is guaranteed by the smooth-
ness of A„and m everywhere except at the origin
The singular potential (17) implies that in the
original gauge one must have

G&„—- —g '[(n —2n')m+ 2v3n'm']

xsin8(8~88„y —8„88~(p), (18)

which can easily be confirmed by a straightfor-
ward calculation. The magnetic charges g and

g ' of the solutions can then be defined as

g„=f, 2 m G„„do~' = ( 4~ /g()n——,'n'),
(i9)

g„'=f,m' G&„do""=2v3(4m/g)n'.
R

' sin 8cos-,'8cos[(n —n') y] '
sine cos-,'8 sin[(n —n') y]

-,'cos8(3+ cos 8)

sine sin-,'8cos(ny)
sin8 sin28 sin(ny)

--,' sin8 cos 8 cos(n'p)
—2 sine cos8 sin(n'y)

—,'43 cos 8(l —cos 8)

As the last step we still have to make sure that
with the above m, and with proper choices of A„
and A &' the potential (13) does describe the de-
sired solutions. This can be achieved by choosing

Clearly in the original gauge the potential (13)
with (15) and (16) will satisfy the classical equa-
tions of motion everywhere except at the origin,
where the Bianchi identity is violated because of
the presence of the pointlike magnetic charges.
In conclusion, the potential (13) with (15) and (16)
indeed describes all the homotopically inequiva-
lent pointlike colored monopoles. It is amusing
to see that the topological considerations alone
(with a little bit of guess work without much use
of the equations of motion) allow one to construct
a complete set of the monopole solutions.

After we have achieved our goal to construct
all the monopole solutions for SU(3), a few com-
ments are in order. First it has often been
claimed that to define a proper homotopy (and
thus a proper topological charge) for non-Abelian
gauge theory one needs to have a scalar multiplet
explicitly in one's theory as in the Higgs-type
theory. The present analysis shows that this is
simply not true. After all, one knows that the
homotopy of the symmetry is determined by the
group itself with no reference to any Higgs field.
Of course, Higgs field becomes necessary'" if
one wants to make the above solutions smooth
everywhere including the origin. A systematic
analysis on the colored monopoles with Higgs
field will be presented in a separate paper. "
Secondly, it has often been claimed that some of
the known SU(3) monopole solutions' have a X,-
like symmetry. Again the present analysis shows
that this is misleading. The true symmetry of
the solutions must always be A,,-like, which auto-
matically generates a A.,-like symmetry. Finally,
we should like to emphasize the generality of the
present method to construct directly a complete
set of the monopole solutions. The method is in
a drastic contrast to the conventional way to find
the solutions by solving the equations of motion
with a reasonable Ansatz. Although I have suc-
cessfully applied the method to SU(2) and SU(3),
it becomes clear that the method could, in prin-
ciple, be applied to an arbitrary group. Further-
more, this method provides one with a deeper in-
sight to the topological structure of non-Abelian
gauge symmetry, telling one how the topological
structure exhibits itself in the form of the mono-
pole solutions.

The method presented above to construct the
monopole solutions deserves to be noted in its
own right. But perhaps a more important physi-
cal implication of it is that it may be used to
establish the duality that exists in @CD, and thus
allows one to obtain the monopole condensation
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for the @CD vacuum. This point could be demon-
strated in the same way that it has been done be-
fore" with the group SU(2). This issue will be
discussed in detail in a forthcoming communica-
tion.
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I et 0~(Q, s) be the total cross section for scattering of meson P on some target, with
—Q the off-shell mass of P. It is shown that, when —Q & m& (the physical P'mass),
quantum chromodynamics suggests that, as the c.m. energy squared s approaches ~,

oz(Q, s) -Cg(Q)s +..., A. ) 0,

where f(Q ) is calculable for large Q . This is compatible with the Froissart bound, but
only for on-shell particles, provided f (-mz ) =0. It is shown that there is experimental
evidence supporting such behavior.

PACS numbers: 11.20.Fm, 12.40.Bb

Let oz(Q', s) be the total cross section for scat-
tering on some target of the off-shell projectile
P (say, a meson) with (unphysical) mass —Q', s
is the square of the c.m. energy. Usually, the
Froissart bound is assumed for 0, and hence its
high-energy behavior is taken to be controlled by
the Pomeron. However, all proofs of the Frois-
sart bound require unitarity' and therefore there
is no reason why it would hold away from the
mass shell. In this Letter we will argue that

quantum chromodynamics (QCD) strongly sug-
gest a behavior of the type

v~(Q', s) - C,f(Q')s + C p, (Q'), (1a)

where X is strictly positive and where, for suffi-
ciently fgrge Q' that perturbation theory be appli-
cable,

f(Q') = [~ (Q')) "+'"' (1b)
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