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There is a common expectation that at suffi-
ciently small distances the topology of space-
time is not Minkowskian. " Because such config-
urations cannot be reached by perturbing flat
space, it is by no means obvious that the spin-
2 character of linearized gravity will persist
nor that the quantum gravitational field must in
general have integral spin; and the possibility of
spinorial manifolds was in fact suggested more
than two decades ago by Finkelstein and Misner. '
The present work may be regarded as a confirma-
tion of their conjecture that gravity by itself can
exhibit half-integral spin. We find in particular
that the possible topologies of three-manifolds
fall into two classes, those (including R', the
topologically trivial space) which allow only inte-
gral spin, and those which give rise to a space of
state vectors having both half-integral and inte-
gral spin sectors.

Our construction is somewhat analogous to the
appearance of half-integral spin in the quantum
mechanics of systems containing both magnetic
and electric charges and in the constructions by
Jackiw and Hebbi and Hasenfratz and 't Hooft' of
half-integral spin solitons from coupled Yang-
Mills-Higgs and isospinor fields: In these cases
and for us, the emergence of spin —,

' depends on a
configuration space which, because of a gauge de-
gree of freedom, is larger than the space of phys-

ical configurations, and on which a 2p rotation
can therefore act nontrivially. A basic difference
is that gravitational spin —, requires neither source
fields nor charges [neither isospinors nor U(l)
spinors].

We will work in the Schrodinger or "super-
space" picture' (This is unrelated to supergrav-
ity: Superspace is a space of three-metrics in
which one regards as equivalent metrics that dif-
fer only by a diffeomorphism, i.e., whose com-
ponents are related by a coordinate transforma-
tion), taking as elements of configuration space
asymptotically flat positive-definite metrics g„
on a fixed three-manifold M. The Schrodinger
state vector g is then a functional on this space
of metrics. We begin by describing the kinemat-
ics of a theory of quantum gravity on an asymp-
totically flat space: We introduce the constraint
equations and note that they are equivalent to de-
manding invariance of the wave function g under
asymptotically trivial diff eomorphisms which are
in the component of the identity. Next, we recall
the classical Arnowitt-Deser-Misner (ADM) an-
gular momentum' and obtain the corresponding
quantum operators. We thereby acquire a repre-
sentation of the rotation group SO(3) [or of its
covering group SU(2)] on the space of wave func-
tions, $, and so can formally ask whether half-
integral spin occurs. We find that for Euclidean
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topology (M =R'), the representation of SO(3) is
single valued: Only integral spin occurs. For
other topologies, the key question turns out to be
whether a 2z twist of a neighborhood of infinity
can be deformed to the identity diff eomorphism—intuitively, whether one can communicate a ro-
tation by 2z at infinity to the whole interior of the
space. Remarkably, precisely this question has
been addressed and, within the last two years,
answered in the context of differential topology';
and we easily find examples of topologies for
which the representation of SO(3) is double valued
and whose associated state space includes sub-
spaces of half-integral angular momentum. Fi-
nally, we point out that the crucial 2n rotation
whose nontriviality is the criterion for the occur-
rence of half-integral spin has the meaning of a
rotation of the system relative to its environment
if an asymptotically flat metric is interpreted as
representing an isolated system embedded in a
larger universe.

Let M be a three-manifold without boundary
which is topologically Euclidean outside a com-
pact region. Introduce on a neighborhood N of
infinity a strictly Euclidean metric 5,~, and de-
note by 3R the space of smooth metrics g„on M
which approach 5„asymptotically. ' As mentioned
above, the state space consists of functions g on

The generalized position operator g, b is de-
fined by'

tempered distributions used in flat-space quan-
tum field theory); however, we will need only
that all fields of compact support are among the
allowed test fields. Equation (3) is equivalent to
the statement that (d/da)g. T~* =0, where T), is
the one-parameter group of diff eomorphism gen-
erated by $, and T ~* is the induced action of T ~
on g~t, .

Let S = S(9R) be the class of all diffeomorphisms
on M generated by such T~ (S thus consists of
asymptotically trivial diffeomorphisms) and let
5),(M) be the component of the identity in B. A

functional ( satisfies (4) iff it is invariant under
7'~ So:

(4)

Thus the momentum constraint singles out the
connected comPonent, ~„as the natural gauge
group of the theory: %e can regard as equivalent
any two metrics g, b which differ by an action of
S, and we call the space of resulting equivalence
classes, gg, a superspace of metrics on M. Then
the momentum constraint lets us regard ( as a
function on%. In general, however, g will not
be invariant under transformations that remain
finite at infinity —rotations, for example —nor
under transformations such as reflections which
are not connected to the identity. [In addition to
the constraint (I), g must satisfy the Hamiltonian
equation

and its conjugate momentum operator p'~ is de-
fined by

f((,D,w'~Pdx = 0, (2)

for any test field $, of compact support. One re-
quires" that the facto r ordering give Eq. (2) the
meaning

The "physical subspace" X comprises those g
satisfying the (momentum) constraint equation

&sbq 0

where D, is the covariant derivative with respect
to g,~. In particular,

z = —f S~ (g.,)7("d'~

= lim (—2fcp, m" do, ) . (6)

which in quantum gravity plays the role of a dy-
namical equation. This rather intractable equa-
tion is not, however, directly involved in our dis-
cussion of spin. ]

In order to define angular momentum, let y
e = 1,2, 3, be three vector fields on M which on
N satisfy the commutation relations

]8=-~ Byte

and preserve the flat metric 0„. In other words,
the y generate on X an isometric realization of
SO(3). Then the classical (ADM) angular momen-
tum' corresponding to an initial data set (g„,v")
has components

for all smooth vector fields $, of compact sup-
port One expe.cts that (2) and (3) will hold as
well for a larger class of test fields g, vanishing
sufficiently rapidly at infinity (for example, the

Here m" is a tensor density, related to the ex-
trinsic curvature ~"by
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and the second equality uses the classical form
of Eq. (1), D,m" =0. It is clear from (6) that the
definition of J is independent of how the p are
extended from N to the "interior" region K =M
—N.

The corresponding quantum operators J are
defined by

J g(g)= —f„Z~ (g.~) .
5

4(g)dx
5

(8)

where R(g) is the family of diffeomorphisms gen-
erated by —[y, ys]. But (8) is again independent
of R outside N, and in N, where (5) holds, we
have R =R

z (n, p, y cyclic). Thus on K,

[S,I,] =i e„,yZy.

A state geK has half-integral angular momentum
iff (with J=J„,R —=R~ for any choice of n) the ro-
tated state vector,

e2'I)i J'q
q R (2 )g (10)

is —(. Now if R(27t)+So, then (4) and (10) imply
that e'"'~p =g for all gHK. On the other hand, if
R (2 ) is not in S„ then there will be wave func-
tions PHKfor which g'=g (2p)*»(. Since in K,
e~" = 1 (and since ('H K), the difference g' —g
will be an eigenstate in K of e"' with eigenvalue
—1. I et us call M "spinorial" when states of
half-integral angular momentum occur in K(M).
We conclude that M is spinorial iff the 2n tuist
R(2m) is not in S„ i.e. , iff it is not isotopic to the
identify in the group X) of asymptotically trivial
diff eomorphisms.

%hen M is topologically Euclidean, it is easy
to see that half-integral spin cannot occur. For
then we can take for N the whole manifold M and,
for the y„, fields which everywhere satisfy (5),
so that R (2~) = 1.

In the general case, by using our freedom to
alter q' (y' refers to any q ') in a compact set,

= —. d—
g

q.R(~)*(g)l g=. ,
1 d
S d(9

where R~(0) is the one-parameter group of dif-
feomorphisms generated by y„. Since any (~K
is invariant under diffeomorphisms T~X)„

go(R oT)*=(oR~~.

Consequently, J is well defined as an operator
on K, and, for gE K, I~( depends only on the be-
havior in N of cp . The commutator is

we can replace q' by

0 , x(E N

f (r)(p'(X), xE N,

where r is the radial coordinate" on N and f (r)
rises smoothly from 0 at some z, to 1 at some r,
)r, . With Fp' in this form R(2m) =exp(2wp') is the
identity on K and also on N for r&r» x&r» for
r, (r(r„R(2w) rotates the spheres r =constant
through an angle between 0 and 2p. The diffeo-
morphism R(2m) is called by Hendriks' a rotation
parallel to a sphere, and from his work we infer
the following key result: R (2~) is in S, iff M is
a connected sum"

of compact three-manifolds (without boundary)
each of which (i) is homotopic to P'&& S' (P' is the
real projective two-sphere), or (ii) is homotopic
to an S' fiber bundle over S', or (iii) has a finite
fundamental group w, (M, ) whose two-Sylow sub-
group" is cyclic.

Given this criterion, it is easy to find compact
three-manifolds N for which the manifold M =R'
gN [equivalently, N with a point (the point at in-
finity) removed] is spinorial. One example is the
three-torus T' = S'&& S'& S' whose fundamental
group (ZxZxZ) is infinite. We can get other ex-
amples from finite subgroups G of SU(2). Be-
cause SU(2) is topologically a three-sphere, the
manifold of cosets N = SU(2)/G has p, (N) =G.
Hence R ~N will be spinorial iff G has a non-
cyclic two-Sylow subgroup Moreo. ver, since N
is by definition an "elliptic" space, I occurs
classically as a spacelike hypersurface of an
asymptotically flat vacuum space-time (in con-
trast to R'4 T' which seems to be classically for-
bodden). ""One G that works is Q = (a I,+io„
+io„+iv,), which, being of order 8=2', is its
own two-Sylow subgroup. One can also construct
the resulting M by removing from R' a solid
cube and identifying opposite faces of its bound-
ary with a 90 rotation.

Our discussion so far has presupposed an as-
ymptotically flat space-time and interpreted an-
gular momentum in terms of the symmetry group
at spatial infinity. Physically, such a space-time
is simply a representation of an isolated system,
which abstracts from the details of the system's
environment. But rotation of a system with re-
spect to a larger universe in which it is embed-
ded makes sense, and we want to show that R(8)
can be so understood. One could imagine, for
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example, cutting out of a space a piece contain-
ing a handle, rotating it, and then gluing it back
in, and so ending with a differently oriented han-
dle. This process will be well defined if there is
a spherically symmetric interface of finite thick-
ness joining the handle to the geometry outside.
And such an interface can be regarded as the ap-
propriate limit of a realistic interface which is
far from a microscopic handle and at the same
time is small enough that the large-scale curva-
ture of the background space can be neglected.
Only in such a situation is one entitled to regard
the handle as an isolated system (from afar, as
a particle), to model it by an asymptotically flat
space-time, and to ascribe to it a "spin" of its
own.

Given then a manifold U (universe) divided into
an interior region M and an exterior region E
such that M 0 E is a spherically symmetric thick
shell, a "rotation by 9 of M with respect to E" is
a three-geometry obtained by cutting M at any
sphere SCMQE and reidentifying after rotating
the inner piece by 8 with respect to the outer.
Since each manifold so obtained is diffeomorphic
to U, a sequence 0& 8 & 2p of such rotated three-
geometries is equally a sequence of three-met-
rics g„on the fixed manifold M. The final three-
metric in this sequence is diffeomorphic to the
original, but the diffeomorphism is a rotation
parallel to the sphere St Thus the spinorial
manifolds M are those for which a continuous 2m

rotation of M with respect to a generic environ-
ment is not deformable to the zero rotation. We
can also grasp from the present standpoint why,
for example, overa'l rotations of M were not in
the gauge group S(M): Here they effect a real
change in the relation of M to its environment.
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