ERRATA

ANOMALOUS CONDUCTION-ELECTRON PO-LARIZATION IN SUPERCONDUCTING YRh₄B₄. P. K. Tse, A. T. Aldred, and F. Y. Fradin [Phys. Rev. Lett. 43, 1825 (1979)].

The values in Table I, line 4, are incorrect and should read as follows:

$$\frac{x}{\mu_{\text{eff}}}$$
 (corr) (μ_{B}/Er) ··· 9.49 10.80 9.87 9.58

The first sentence at the top right-hand side of p. 1826 should read:

"Because of the inhomogeneous Knight-shift broadening, we only observe the $\pm \frac{1}{2}$ transition

for the alloys. There is a gradual loss...."

RIPPLONS, ³He, AND HEAT CONDUCTION ON THE SURFACE OF SUPERFLUID ⁴He. I. B. Mantz, D. O. Edwards, and V. U. Nayak [Phys. Rev. Lett. 44, 663 (1980)].

There is a factor of 2 error in the formula for the 2D 3 He- 3 He cross section σ_v in the last paragraph of the paper. The formula for σ_v should read

$$\sigma_{n} = M |V^{s}(0)|^{2}/(2\hbar^{3}v)$$

which gives for the numerical estimate of the conductivity, $K_3 \sim 3 \times 10^{-5} T$ erg sec⁻¹ K⁻².

ION-BEAM NEUTRALIZATION-REIONIZATION SPECTROSCOPY OF ION-PAIR FORMATION IN REACTIONS OF He*(2^3S) AND He*(2^1S) WITH O₂. Thomas M. Miller and Keith T. Gillen [Phys. Rev. Lett. 44, 776 (1980)].

The byline and address should read as follows:

Thomas M. Miller

Molecular Physics Laboratory, SRI International, Menlo Park, California 94025, and Physics Department, University of Oklahoma, Norman, Oklahoma 73019^(a)

and

Keith T. Gillen

Molecular Physics Laboratory, SRI International, Menlo Park, California 94025

Footnote (a) should read (a) Present address.

HIGH-RESOLUTION INFRARED STUDY OF HYDROGEN (1×1) ON TUNGSTEN (100). Y. J. Chabal and A. J. Sievers [Phys. Rev. Lett. 44, 944 (1980)].

The vertical scale in Fig. 2 should read 0%, 2.5%, 5%, and 7.5% instead of 0%, 5%, 10%, and 15%, i.e., the peak absorption should be 8% instead of 16%. The effective charge, e^*/e , derived from the data is thus 0.029 ± 0.007 , in better agreement with the model proposed in the Letter.