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#%)? and equals 1.1 meV. For E =8 meV Eq. (6)
gives p =Tx 10" states/meV cm®. This is close
to the value of p we deduced from the data under
the assumption of equal quantum efficiencies for
DX and M X.

We have assumed nonzero short-range phos-
phorus atom correlations. They should be looked
for by x-ray diffraction techniques.

We believe that the most reasonable explana-
tion of the M * line is that is is due to recombina-
tion of alloy-trapped excitons. More detailed ex-
perimental and theoretical results will be forth-
coming.
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This Letter reports on the KLL Auger spectra of Na and Mg excited with different
x-ray sources. Intrinsic plasmon creation in x-ray photoemission leads to plasmon-
gain satellites in the Auger process. With low-energy x rays the probability of intrin-
sic plasmon creation in x-ray photoemission and hence the plasmon-gain probability is
reduced. With high-energy x rays the plasmon-gain intensities agree with predictions
of a new formalism of photoemission and Auger transitions as a single quantum mech-

anical process.

PACS numbers: 79.60.Cn, 71.45.Gm

It is the purpose of this paper to show that plas-
mon-gain processes in Auger electron spectros-
copy (AES) present new possibilities for investi-
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gating phenomena of incomplete relaxstion, inter-
ference effects, and the changeover from the
adiabatic to the sudden limits in photoelectron
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spectroscopy. We believe that this is the first
quantitative experimental determination of the
variation with photon energy of the intrinsic plas-
mon creation probability in x-ray photoemission
spectroscopy (XPS) and of the effects of adiabatic-
to-sudden changeover on shakeup.' A new one-
step model of the XPS and Auger processes suc-
cessfully gives the intensities of the plasmon gain
in Na, Mg, and Al when high-energy x-ray excita-
tion is used.

In the theory of photoemission it is predicted
that shakeup processes should be weak when the
photoelectron kinetic energy is low and the ex-
citation is adiabatic. A good test of the theoreti-
cal arguments should be provided by experiments
on free-electron-like metals such as Na and Mg,
where the shakeup intensity appears mainly as
plasmon satellites. Here the transition from sud-
den to adiabatic excitation should take the form
of interference between the intrinsic shakeup and
extrinsic inelastic losses.””* Experimental evi-
dence confirming these arguments is, however,
scarce. The intrinsic and extrinsic plasmons can
be separated by use of the intensities of multiple
losses, but such attempts have led to varying and
hence questionable results.’”®

In the usual two-step model of Auger emission®
it is assumed that intrinsic plasmons excited in
the XPS process decay or propagate away before
Auger decay of the core hole. However, plasmon
lifetimes in Na (0.4 eV ™!) and Mg (0.7 eV™") (Ref.
10) are comparable to K hole lifetimes (0.30 and
0.36 eV™!, respectively.'’ Thus simultaneous
Auger decay of the core hole and plasmons can
occur and give rise to a high~energy plasmon-
gain satellite.'®'" This is a classic example of
incomplete relaxation. Extrinsic plasmons con-
tribute only weakly, or not at all, because they
have small concentration at the core ionized atom.
As factors determining the plasmon-gain intensi-
ty such as the ratio of core-hole and plasmon life~
times and plasmon dispersions are all constant
for a given metal, we can use the variation with
photon energy of the relative plasmon-gain inten-
sity, B*, to investigate the changeover from adia-
batic to sudden limits in XPS. That is, we can
assume that the plasmon-gain probability, 8*, in
AES is proportional to the intrinsic plasmon loss
probability, 87, in XPS.

A combination of Mg, Al, Si, Ti, and Cu anodes
with Al or Be window materials was used to ob-
tain either almost pure Mg Ka (1253.6 eV) or Al
Ka (1486.7 eV) radiation or pure bremsstrahlung
radiation with an average energy of about 10 keV.

In addition, a mixture of Si K& (1740 eV) and
bremsstrahlung radiation could be produced and
contributions of these two sorts of radiation to the
XPS and Auger spectra were separated arithmeti-
cally. The energies of the Na KLL and Mg KLL
Auger peaks used in this study are ~995 and
~1186 eV, respectively.

Figure 1 illustrates the Na KL, ;L, ; 'D Auger
spectrum excited with Mg Ka radiation together
with the plasmon gain and the first plasmon loss.
The mere existence of the plasmon-gain peak
shows that there is an intrinsic contribution to
the plasmon loss found in XPS and that it is im~
portant to use a one-step model of XPS and
AES.'?>"!" The figure also shows a magnified plot
of the plasmon-gain peak excited with Mg Ko and
bremsstrahlung radiation with energies of 1253.6
and ~10000 eV, respectively, and normalized
with respect to the Na 'D peak. The intensities
of the plasmon-gain peak and of the region be-
tween the gain and the main peaks clearly in-
crease with the energy of the exciting radiation.'®
This reflects the increased intrinsic plasmon pro-
duction in the XPS process with increasing photo-
electron kinetic energy, E. This variation in the
intrinsic plasmon-loss coupling strength, 85",
with E due to interference with the extrinsic proc-
ess has been expressed by Gadzuk* as

BE- =Boo-_ (ez/ﬁ)F(ch/wp), (1)
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FIG. 1. Na KL L4 p Auger peak, with associated
plasmon loss and gain, as excited by Mg Ka radiation.
Both surface and bulk plasmon losses are observed
and some intensity ~ 5 eV below the main peak is due
to the Na KL,L, 'S peak. Also shown, with the inten-
sity scale expanded, is the gain region as excited with
Mg Ka radiation and with bremsstrahlung radiation
(solid line). The spectra have been normalized for
the KL,L, D peak intensities.
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where 8. is the coupling constant without inter-
ference, i.e., for infinite photoelectron energy
and F(x) is a slowly varying function.

In Fig. 2 we have plotted 8;*/B1.*, as a func-
tion of the photoelectron energy, where B, was
obtained for bremsstrahlung radiation with a peak
intensity at ~10 keV. Thus By, 'is only about 10%
smaller than 8. according to theory.'®* Experi-
mentally, the ratioBz*/B,:* was found for Na
KLL 'D with Mg Ka, Al Ka, and Si Ka radiation,
and for Mg KLL 'D with Al Ka and Si Ka radia-
tion. Comparison with Gadzuk’s approximate cal-
culation shows an overall agreement, although
theory seems to overestimate the importance of
interference effects as does the newer formalism
of Chastenet and Longe.?° A different treatment
of the sudden-to-adiabatic transition for valence-
level photoemission by Schrieffer® produces a
changeover to adiabatic behavior at much lower
photoelectron kinetic energy, so that our experi-
mental approach should provide a useful guide to
the applicability of the different theories. The
possibility that “intrinsic” plasmon gains play a
small role when photoelectron kinetic energies
are low should be investigated because inelastic
mean free paths are then very short.

Using the sudden approximation, we have de-
veloped a theory where the XPS and Auger proc-
esses are treated in a unified manner. The Auger
decay is included to all orders and the finite plas-
mon lifetime is taken into account.?® In the re-
gion of the plasmon gain peak the Auger electron
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FIG. 2. The decrease of the plasmon gain intensity,
B*, relative to the main KL,L, !D Auger peak due to
onset of adiabatic effects in the XPS process at low
photoelectron energy for Na(plusses) and Mg(dots).
Calculation of theoretical curves for Na(solid line)
and Mg(dashed line) is described in the text.
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current is given by

jo~| E(&f ! )

€-il' T \w,/ €=w, =il =il

where 2I" and 21"p1 are the lifetime broadenings
(full widths at half maximum) of the core level

and plasmon, respectively. w, is the plasmon
energy at momentum ¢ and the coupling constant
between the core hole and the plasmon is given by
£..2® The main peak and the plasmon gain satel-
lite are given by the squares of the first and sec-
ond terms, respectively. The cross term repre-
sents an interference between these two processes.

In Table I we list the experimental heights of
the Na, Mg, and Al plasmon gain peaks relative
to the 'D KLL peaks in bremsstrahlung-excited
Auger spectra. All possible disturbing effects of
plasmon losses from the KLV Auger peaks or the
primary peak have been subtracted.”” ** Agree-
ment between theory and experiment is poor if
2I'}; is set equal to 0 in Eq. (2) as if the intrinsic
plasmons did not decay at all prior to Auger de-
cay of the core holes. However, inclusion of the
appropriate value® of 2T}, gives very good agree-
ment considering the experimental accuracy of
the parameters needed to evaluate Eq. (2).'° The
agreement would be improved if the slight devia-
tion from the sudden limit, even with bremsstrah-
lung radiation, were included. It must also be re-
membered that emission from the surface atoms
contributes to the primary peak, but not to the
bulk-plasmon-gain peak, thus decreasing the val-
ue of ¥ by about 20% in our experiments.

In summary, our results indicate that in Auger
spectroscopy the ratio of the core-hole and shake-
up-excitation lifetimes is an important factor in
determining the strength of incomplete relaxation
effects. Interference between intrinsic and ex-
trinsic losses have been shown experimentally to
reduce the intrinsic loss contribution to photoelec-
tron spectra by ~40% when the photoelectron ener-
gy is ~ 20 times the loss energy and the change-

TABLE 1. Heights of experimental and theoretical
plasmon gain peaks with respect to the main KLL 'D
Auger peak.

Theory, Theory with
Expt. 2 =0 2Ty from Ref. 25
Na 0.030+0.003 0.067 0.032
Mg 0.0065+ 0.002 0.024 0.0086
Al 0.005+0.002 0.016 0.007
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over from sudden to adiabatic excitation is con-
tinuous. No theory available at the present time
gives a fully accurate description of the change-
over as observed by studies of plasmon gains.

We thank M. Campagna for his support of this
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comments and discussions.
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