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A real-space dynamic renormalization-group scheme is used to evaluate static and
dynamic correlation functions for a kinetic Ising model on a two-dimensional square lat-
tice. The critical exponents obtained from the correlation functions calculated using this
method satisfy the proper static and dynamic scaling relations and are in excellent agree-
ment with known values.

PACS numbers: 64.60.-i

The calculation of static and dynamic co~rela-
tion functions in systems that undergo a phase
transition is a problem of great interest. These
functions can be measured in scattering experi-
ments and exhibit a wide variety of phenomena in
the region near the phase transition. Recently, ' '
a real-space dynamic renormalization-group
(BSDBG) method was introduced for the investiga-
tion of lattice dynamical models. In this Letter
we apply this method to the kinetic Ising (KI) mod-
el on a square lattice and show how, within the
formalism, one can calculate space- and time-
dependent correlation fucnti. ons.

The KI model' describes the stochastic time
evolution of a set of Ising spins jv). The equilib-
rium properties are governed by the nearest-
neighbor Ising-model Hamiltonian, H„charac-
terized by a coupling K. The time evolution of
this model is assumed to be generated by a sin-
gle- spin-flip operator (SF0):

where a is a relaxation rate, i is a site index,
A, , it'~ sets all o~=a~' except for site i, and the
simplest W, [a], consistent with detailed balance
and which reproduces itself under BG iterations,
is of the "minimal-coupling" form:

W, [o] =&+A, o, o, '+A, o,&"~, (2)

where', = —2tanh(2K), A, A, ', o, is the sum of
the four nearest neighbors about the spin at site
i, and cr&

" is the symmetric sum of the products
of two nearest-neighbor spins about the spin at
site i.

As a first step in our RSDBG analysis we divide
the system into cells of four spins and the dynami-
cal operator into intracell and intercell parts: D,
=D, '+ED, . The intracell part is of the form

5'bI ~i] =g, & "'D, '[ol o'],

5[~I o'] = —-'o. Q, &. . "'W, [o]v, c,',
where i now labels cells, A, . ' sets all 0, =0,'

(I) at all cells except i, and D, ' depends only on the
spins in the ith cell:

where the index a labels the four spins in the ith
cell. The detailed balance condition for the un-
coupled cells gives the condition J, = —2(tanh2K, )
x(1+J,), where K, is the nearest-neighbor coup-
ling for the uncoupled cells.

As discussed in Bef. 2, the BSDBG method cor-

(4)

(5)

(6)

I responds to choosing a mapping function T[tJ. I o],
relating our original problem to a similar one on
a lattice with a larger lattice constant, as the
solution to the eigenvaluelike equation:

Z-. & bl~]T[t I~]=Z-„&[i Ir]&[i I~],
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where the block-spin variables are denoted by p
and the "eigenvalue" D& is the SFO operating in

p space. This choice of T ensures' that non-Mar-
kovian effects are eliminated. The renormalized
probability distribution is as usual' P[p]
=(Tl~lo]&.

We can proceed to solve (6) (together with nor-
malization conditions discussed in Ref. 2) in a
power series in the cell coupling. To zeroth or-
der in &, one finds that the mapping function is
T,[p!crl=g&2[1+&~/» ' (o')], where g,

'
(v) is the

slowest-decaying odd eigenfunction of D&'. The
zeroth-order expression for D„' is of the same
form as (1) with A, =A, =0 and a new relaxation
rate a' =~, where A., is the eigenvalue associated
with (&

' (0). The first-order (in e) calculation
leads to a D„ identical in form to (1) but with a
new coupling' K' = (a/a, )fPC, K„J,) and n'

=«„(K,K„J,). At this stage the intracell pa-
rameters a„K„and J, are unspecified.

Consider a time correlation function C»(t)
=(B,A, (t)) where A, and B~ are spin variables
of interest. Associate with A, a coarse-grained
variable A„P[p]= (T[p!o]A, ), define the projec-
tion operator P in v space PA, =Q &T[p!o]A&,
and let Q be the complement of P. We can then
easily obtain the relation C»(t) = C»'(f) +((QB~)
x (QA, (t))) where C»'(t) is the correlation func-
tion in the coarse-grained variables with dynam-
ics generated by D„. We expect C»' to carry the
information about long distances and times, and
the other term to be short ranged. More speci-
fically, if A =o&, then, to lowest order in ~,
A„=v, (a) p, with' v„(a) = ((,("'(v)v, .),. We can
then evaluate the term involving QA, to lowest
order in e and obtain the key result used in our
calculations:

(7)

! large hint as to how to develop a systematic theo-
ry. If we define e(n) as the two-spin static corre-
lation function for spins separated by n lattice
sites along the x ory directions, then we have
from (7) that &(2n) =v, 'e'(n) for n) 1. This rela-
tion depends on the details of the renormalization
procedure through the factor v, . The ratio e(4)/
e(2) =e'(2)/e'(1) gives an implicit relation between
K and K'. Since we cannot directly invert this
equation to obtain K', we have used the known
high-temperature results' for the e(n) to deter-
mine the coefficients in the expansion

q'=y'+Q a„q",
fl =3

where g = e ' u. This form clearly interpolates
between the appropriate high- and low-tempera-
ture results for K'. Using terms up to a, we ob-
tain a recursion relation with fixed point proper-
tiesu, =0.4150 and v '=y~=1.011. Since these
results are very close to the exact results, we
will, for simplicity, use the simple recursion
relations given by (8) in our numerical calcula-
tions.

We must now reconcile the recursion relation
(8) with the result given by the direct analysis
leading to D&. It turns out to be quite convenient
to demand that the relation K' = (n/o. ,}f(K,Koi J,)
be used to fix n, =n, (K,K„J,) with K' given by (8).
Conceptually this is nice because it decouples the
determination of the static recursion relation

C„„(t)= v, 'C„'(t)+5,,+„(1—5„,)v„*(a)v„(a') exp(- x„t),
where A.„ is the nth eigenvalue of D&'. Recursion
relations for static two-spin correlation functions
can easily be constructed from (7) by setting t =0.

There are important restrictions on our pro-
cedure imposed by the asymptotic behavior of
static correlation functions at large distances.
Assume that the BG transformation changes the
length scale by a factor b. If the spins are initial-
ly separated by a distance R =b", we find, at high
temperature, after n iterations that' (o,op)
= (v,')"(p,p, ) where p, , and p, are nearest neigh-
bors interacting with coupling K„. For n large K„
will be small and (p, p, ) K„. In order to obtain
exponential decay with distance we require K„

&n-K"-K', hence the recursion relation must be
of the form K'-K' for K small. The cumulant ap-
proximation' gives K'-K. A similar argument
shows that K' =bK at low T. We thus conclude
that acceptable recursion relations must interpo-
late smoothly, as T changes, between these two
behaviors. In the case of a square lattice with 5
=2, we suggest that a natural variable to intro-
duce is p =e' u (u=tanhK) and the recursion re-
lation

q7
I (8)

gives the proper interpolation between large and
small K and will, therefore, lead to exponential
decay of the correlation functions. It is worth
noting that (8) gives the exact critical coupling
u, =~2 —1 and the exact thermal exponent v ' =y r
=1. The recursion relation (8) does not come di-
rectly out of our previous analysis but it gives a

1084



VOLUME 44, NUMBER 16 PHYSICAL REVIEW LETTERS 21 +PROWL 1/80

from the dynamics.
We have to specify the quantities K0 and J,. An

analytic investigation of the recursion relation
for e(l) at high and low temperatures shows that
we must require E0=2E in both limits. This
"bond doubling" is physically appealing since one
cut two bands to each spin in decoupling the cells.
The parameter J~ should go as K0' for small K0
and if we require, which is physically sensible,
that T [pier] reduce to the "majority rule" at low
temperatures then J,—1 as K- ~. We have use

0
d

a very simple interpolation formula for K0 and

J, between these high- and low-temperature lim-
i.ts: its =2' -u'/Sq and J, =tanh'(2pA, ). The tem-
perature-independent parameters q and p were
determined to be 0.38 and 0.434 by simultaneous-
l demanding that the e(1) calculated from the
recursion relations agree with the exact resu lt
at the critical temperature e, (1)= 1/K2 and that
e be as close to e as possible for K=K,.0

Using these results we obtain, to lowest order
in e, the magnetic eigenvalue x„=4v, = 3.676
which yields P = 0.1219 (exact value is 0.125).
This value is considerably better than those yield-
ed by cumulant expansion analysis at a similar
order. The associated calculation of the magnet-
ization leads to excellent agreement with the ex-
act result, for all temperatures. The largest er-
ror is for u =0.43 and is 2.4'. The "dynamic"

200

l50—

recursion relation relating o ' and e leads to the
dynamic exponent z = —in(& )/lnb = 1.791 which is
larger than the known' lower bound (z = 1.75).
(The results for p and z obtained by using the full
recursion relation for y are P = 0.1215 and z
= 1.796.) There is a wide range of quoted values
of z from numerical analysis. "

We have calculated the magnetic susceptibility
and compared our results with very reliable ser-
ies results. ""Our results are excellent, giving
detailed agreement for all T &T, and a critical ex-
ponent y = 1.756.

In Fig. 1, we give results for the wave-number-
dependent static correlation function as a function
of temperature for various wave numbrs and
make a comparison with the results of Ref. 11.
Our calculations correctly reproduce the maxi-
mum at T&T, for q0. This a subtle effect cor-
responding to a significant correction to the Orn-
stein-Zernike form for the static correlation
function. We have also calculated C(q, T =T,)
and extracted the exponent tl =0.248 (0.25 exact).

In Fig. 2 we plot the "same-site" correlation
function C;; (t) =(v; v;(t)) for various tempera-
tures. The figure clearly displays critical slow-
ing down for K-K,. For K)K„C;,(f) decays to
the nonzero magnetization density squared for
long times, as expected. The time Fourier trans-
form C;;(~) shows a narrow peak near ~ = 0 for
E-K,. The quantity C;;(u& =0) diverges as irt
-K

(

" and we find n = 1.54 in agreement with theC

scaling relation n= v(z+2-d -i7). Also, C;;(&u)
at K=K, diverges like & "with p, = 0.86, again in
agreement with scaling. " We have also calculat-
ed the dynamic structure factor for a wide range
of frequencies, wave numbers, and temperatures.
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FIG. 1. The static correlation C(q) for q„=q~ vs re-
duced temperature T/T for various wave numbers
(q„a) . The solid lines are the RG calculations and the
dashed lines are taken from Ref. 11.

FIG. 2. The calculated site-correlation function
(o;o; (tj) vs nt for various couplings K (the asymptotic
values given by the magnetization squared are shown

as dashed lines) .
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All of the various scaling relations are satisfied.
A full discussion will be given elsewhere.

It should be pointed out that other approaches
for applying the BSDRG to the kinetic Ising model
have been suggested. " " These other methods
have not addressed the problem of the elimination
of non-Markovian effects'; they have been used
only to extract critical properties, and no attempt
to use them as a basis for a formalism to calcu-
late correlation functions has been made.
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