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Pauli Principle and the Optical Potential for Elastic Two-Fragment Collisions
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The Pauli principle is introduced into the theory of the optical potential in a consistent
manner. This is facilitated by an appropriate choice of off-shell extension for the two-
fragment transition operators. Dynamical equations for the optical potential are derived
and low-order approximations are discussed.

PACS numbers: 24.10.Ht, 24.50.+g

The device of a complex, equivalent one-parti-
cle optical potential (OP) is widely used to de-
scribe the elastic scattering of two nuclear frag-
ments. However, the microscopic theory of the
OP is deficient in providing both a consistent
method for the calculation of this object and a
practical inclusion of the Pauli principle. A con-
sistent nonrelativistic theory of the OP has been
proposed recently in the case where all the parti-
cles are distinguishable. ' In this Letter we out-
line how that work can be generalized to include
the effects of particle identity. ' The central idea
of our development is the recognition of the con-
straints upon the off-shell structure of the transi-
tion operators for rearrangement scattering into
physically indistinguishable channels imposed by
the demand of the existence of an OP. These con-
straints are essentially formalism independent
and thus are directly relevant to approaches to
the theory of the OP besides the one considered
here.

The amplitude for the elastic scattering of two
composite fragments is given by

&q g(k, )IT(P)lq s(k;)&,

where ) cp&(k)) is the two-fragment ground state
with relative momentum k and T Q) is the fully
symmetrized transition operator"

(1)

In (1) T s 8 can be taken to be equal to the usual
unsymmetrized transition operator T 8 8

' = V G
&G& ' to within terms which vanish on shell. A
canonical' two-cluster partition is denoted by P,
while P is the set of all partitions which can be
obtained from P by permutations. 6(P~P) = 1 if
PHP and 5(PUP) =0 if PEP

The optical potential U(P) is defined by

TQ)=UQ) UQ)g-, T(j), (2)

where@ =G P and I' is the projector onto the
space spanned by (~pz(k)) ). The equivalent one-

body OP in momentum space is os =(ya(k')i U(p)
x ~q s(k)). Definition (2) takes on content when it
is supplemented by a symmetrized dynamical
scattering integral equation4

T Q) =AQ)+K(j)T(P), (3)

where A(P) and K(P) are determined by the micro-
scopic interactions. From (2) and (3) we then ob-
tain a dynamical equation for U(P):

UQ) =A Q)+tK(i) -A(P)g-, lU(P). (4)

obviously different choices for the off-shell ex-
tensions of the operators T& 8 which represent
rearrangements into physically indistinguishable
channels 11 lead, via (1)-(4), to different poten-
tials'U z. We constrain these choices by requir-
ing that 'U& be real except for the effects of in-
elasticities' and that it also be independent of the
choice of the canonical partition P.

If the off-shell extension of T Q) is such that
both A(p) and K(P) -A(P)g are continuous across
the elastic unitarity cuts, then UQ) shares this
property and our first requirement is satisfied.
This indicates how the reality properties' of the
OP are controlled by the off-shell behavior of
T(P), but it gives us no indication as to how a
proper choice of this behavior is to be made. A
hint can be drawn from the fact that the reality
properties of p depend on the off-shell unitarity
relations satisfied by T (p). With the choice
Tt+~(p) obtained with T s 8' in (1), e.g. , asym-
metries appear in these relations which are in-
consistent with (2) and a properly behaved OP.
Similar remarks apply to the choice TB 8( )

8=G 'GV .
The preceding asymmetries result from the in-

equivalent roles of p and p in the behavior of
Tz ~

' off shell. This inequivalence would also
appear to introduce a spurious dependence in Us
upon the canonical partition p which violates our
second requirement on the OP. This suggests
that we choose a set of transition operators T z 8
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T s, ~ =T o, ~"+~8, sGs
' (5)

where 58 8=1-58 y. We remark that below we
use (5) with P and tl replaced by arbitrary parti-
tions a and b; also, T, ,gT, , With the methods
of Ref. 2 we show that the choice (5) yields a vs
with our stipulated properties.

The operator 7 ' ~ =—T 8
' —VB satisfies the

set of connected-kernel integral equations"

+a, 8 PI «a, 8(a) +g «cx0( )G +y, 8 (6)

which are related to the residues of G nonprefer-
entially with respect to P and P, e.g. , the oper
ators introduced by Alt, Grassberger, and Sand-
has (AGS)~

where «"(a) is the a-connected part of w" and

a, b, p are general partitions. ' The prime on the
sum in (6) denotes omission of the fully connect-
ed term. G, is the free Green's function and the
subscript 0 refers to the N-cluster partition. The
major advantage of (6) is the explicit multiple-
scattering structure which resides in its inhomo-
geneous term. For example, «" (i) =t;, where
t,. is the ordinary two-particle transition operator
and i is a pair label [(N- 1)-cluster partition] ex-
ternal to a and P.

The derivation of a dynamical equation for UQ)
is based on the subtraction of the discontinuities
across all the elastic unitarity cuts in the class
P. To this end we introduce the operators A~" Q)
as solutions of the connected-kernel integral
equations

(7b)

where

(P) =~, +g, l« '(v)Go- v, "g&~(r&P)]Ag'(ll) (7a)

A„(P)=6„,+g,A, (j)[«~'(x)G, V, &—g,6(x~j)],
whose kernels are continuous across the P-class unitarity cuts." The combination of (6) and (7) yields

r" '=g,A, Q)g.'«~'(a)+Q, A, (p)Q „6(~Ep)V,~g, ~"'. (8)

If we take n, PC P in (8) and then use (5) for T ~ we find with the aid of (B15) and (7b) that'

7'. , =p,A, (P)f, 1(p)+g,A, Q)+,6(pep)v„~g, T,„ (9)

18'(i) = l[p' «"(a)+»'(e)]G.+&»5(y~ j))6(p~ p)G, '.
a|E 8

Since I&~(p) has no tI-class elastic unitarity singularities we see that such singularities appear only in
the kernels of (9). Similar properties hold for the form of (9) which results if (5) is first used in (6)
with arbitrary n and P and then the resultant equation is combined with (B15) and (7). The inhomoge-
neous term of (9) can be written in several alternative ways' with (7b) and (B15).

We next introduce a set of operators %l„s(P) defined by (m, PHP)

~. ,(i) =T. , &,6(~~-i)7. ,g,~, , (i). (11)

From (9) and (11) we infer that

~„,,Q) =P,A, (P)1,&Q) -&,6(~~i)I~, (j)&,, ,Q),

where the kernel of (12) is, for a, XCP,

SC,"(P)= [+6(P&j)A, Q) -6„,++A,"(P)g «&''(a)G, ]P„
8 a(E 8

(12)

and is also free of p-class unitarity singularities.
It can be shown that all of the operators appearing in Eqs. (5)-(13) are, in the terminology of Ref. 4,

label transforming under the symmetry transformations which represent permutations of the nucleons.
This means that under such a transformation an operator is mapped into itself but with any of its par-
tition labels replaced by the partitions which result from the permutation mappings of the original la-
bels. We can then apply the techniques of Ref. 4 in a straightforward manner to obtain integral equa-
tions for the symmetrized operators TN) and V(P). Specifically, from (11) we have

T, 8
=+, 8(&) +Z x&(~~&)+, x(&)g x T x, 8
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(16)

where Z&~,
= 1 if i is external to P and vanishes otherwise. Calculations made with the use of (17) are

well within present limits of practicality even though (17) represents a considerable generalization of
the usual antisymmetrized impulse approximation which results from the ZB,- t,. 6 &; terms and yields
"tp"-type amplitudes. We recall that t; is a theo particle op-erator and so the input into (17) contains
no hidden N-particle dynamics. Additional approximations to (17) which appear to be consistent with
a low-density limit are the neglect of the nonorthogonality terms proportional to 58 8 and those t s in
the kernel with i internal to P.

This work was supported in part by the National Science Foundation under Grant No. PHY-78-26595.

and so we recover Eq. (2) with

U(p) =p s6(P&P)as, 7f'Us, s(li) (15)

Finally, from (12) we find [cf. Eq. (4)]

UQ) =[E,6(P~j)e, —,&,A, '(j)i-,y(j)] —[E,6(PCj)a, —, If-, '(j)]UQ).

Equation (16) is a dynamical integral equation for the optical-potential operator U(P) whose driving and

kernel terms are free of all p-class elastic unitarity singularities and which includes all effects of the
Pau1i principle. It is easily verified that the kernel of (16) is a connected operator. Also the input in-
to the kernel and driving terms of (16) consists entirely of subsystem dynamics [the W& '(a) operators]
and the solutions Ay (P) of the connected-kernel integral Eqs. (7). Thus, (16) along with (7) constitutes
a consistent theory of the optical potential in that U(p) can be calculated in a well-defined manner, at
least in principle. This also allows the systematic calculation of corrections to low-order approxima-
tions. As long as these approximations leave the operators (16) label transforming, the matrix ele-
ments U&(k'ik) are independent of the choice of P. We remark that (16) reduces to a one-dimensional
integral equation for the partial-wave amplitudes of V s(k'ik).

Our results permit the reconsideration and extension of all the standard approximations to the OP
but, more significantly, we are presented with the opportunity to construct entirely new calculational
methods. These questions will be pursued elsewhere. It is instructive here, however, to examine a
low-order approximation to (16) after rewriting its inhomogeneous term using (B15) and (Vb). In the
resultant form of (16) we neglect all W" '(c) except for c =i, take A&s(p) = 6tj &, and drop all terms in-
volving V ysP&. Then (16) becomes

U(p) =Q QB s (QZ st, ZE;+68 los +Vs ) —gals s (Qhs;t; Gc+5s 7f)P7fU(p)) (17)

gpss
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