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A simple model of eutectic solidification is used to illustrate the marginal-stability
theory of pattern selection in nonequilibrium processes. The nonlinear equation of mo-
tion which describes this model suggests a mechanism for noise amplification at the mar-

ginally stable operating point of the system.
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Some of the most interesting questions in the
theory of nonequilibrium systems pertain to the
mechanisms of pattern selection. A familiar
example occurs in the Bénard problem!® where
the hydrodynamic equations of motion by them-
selves seem unable to provide a unique prediction
for the spacing of convective cells.? These equa-
tions of motion predict the existence of stable
steady-state convective patterns with a finite
range of periodicities. Nature, however, seems
to select only one of these patterns.

An almost identical situation occurs in the
solidification of binary fluids with compositions
at or near the eutectic point. Such systems gen-
erally solidify in the form of parallel lamellae
of the two coexisting solid phases or, alternative-
ly, rods of one phase in a matrix of the other.
The lamellar version is illustrated in Fig. 1
where a periodic array of solid phases « and 8
is shown growing upward into the fluid. The situa-
tion that we shall consider is one in which the
velocity of the solidification front is fixed by the
imposition of a moving temperature gradient as
in a zone-refining or directional-solidification
procesg. It is known experimentally that the
lamellar spacing XA is uniquely determined by the
growth conditions. The steady-state theory for
this system has been worked out in detail by Jack-
son and Hunt,® who find that solutions exist at all
AX’s and, further, argue on physical grounds that
these solutions will be stable whenever X is great-
er than some critical value A.* It turns out that
this critical A, coincides with the point of min-
imum undercooling of the solidification front (or
equivalently, the point of maximum growth ve-
locity at fixed temperature). The condition of
minimum undercooling® has conventionally been
assumed in the metallurgical literature to locate
the operating point of this system; and the re-
sulting predictions seem to be in good agreement
with experiment., There has never been any
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really fundamental justification for this condition,
however; nor has there even been a systematic
study of the stability problem.®

The beauty of the eutectic model, in contrast
to the Bénard or the single-phase solidification
problems,” is that one can derive a useful equa-
tion of motion for the system with little more
than dimensional considerations. To do this, we
start by writing the steady-state result of Jack-
son and Hunt® in the form

XA,

AT() °‘<Tc + 7), (1)
where AT is the undercooling at the solidification
front and A, the critical x mentioned above, has
the standard form?” for a stability length

A2 Ddy/v. (2)

Here D is the diffusivity in the liquid, 4, is a
capillary length, and v is the growth velocity.
Equation (1) can be understood qualitatively as
follows: The first term on the right-hand side,

FIG. 1. Schematic illustration of a lamellar eutectic
growing up the page with a deformed solidification front.
The lamellae may be visualized as semi~infinite plates
perpendicular to the plane of the paper. Experiments
may also be performed in which the entire sample is a
thin film in the plane of the page. The analysis in this
paper is most directly applicable to the latter situation.
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proportional to A, arises because each advancing
o region rejects B atoms and vice versa, Thus
the fluid ahead of each solid region is supersatu-
rated and the interfacial temperature is corre-
spondingly depressed. The second term is a
capillary effect. As shown in Fig. 1, the solidify-
ing surfaces at the fronts of the lamellae must
bulge forward in order that capillary forces bal-
ance at the triple points. This curvature, propor-
tional to A~!, determines the second contribution
to the undercooling via the Gibbs-Thomson rela-
tion.

Now suppose that this solidification front is
slowly and gently deformed on a length scale
much greater than A. Let this deformation be
described by the function ¢&(x, t), the dashed
curve in the figure, which measures the vertical
displacement of the interface away from its unde-
formed position in the frame of reference moving
with velocity v. If the moving temperature grad-
ient which defines this frame of reference has
magnitude G, then

Gt=-AT(A). (3)

Next, define y(x, ¢) to be the horizontal displace-
ment of lamellae originally at position x. (See
Fig. 1.) That is, the local lamellar spacing is

Ax, 8) =ay(1+ 3y/ox), (4)

where 2, is the original spacing of the undeformed
system. Our basic assumption—one which was
crucial to the stability argument of Jackson and
Hunt—is that ¢ and y are coupled by the condition
that each lamella must grow in a direction which
is locally perpendicular to the solidification front.
Thus

8y /8t =-v d;/ o . (5)

Taking two derivatives with respect to x on both
sides of (3), we obtain a nonlinear partial differ-
ential equation for a(x, ¢):

an _uvn, o2
>0
o S0 AT(M). (6)

Equation (6) may conveniently be rewritten in the
form

oA

o(A) pol (7

N
9T X
where A=x/x, and D plays the role of a A-depen-
dent diffusion constant:

Lol arn. (8)

DA =1 - 7 ep
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Note that several constant factors have been ab-
sorbed in the new timelike variable 7. The sta-
bility properties described by Jackson and Hunt
are immediately apparent here. Constant-Asolu-
tions of (7) are differentially stable as long as D
is positive, that is, as longas A>1 (A>x,) so
that the system is on the large-x side of the min-
imum in AT. Nothing in the equation of motion
by itself, however, seems to tell us which mem-
ber of this continuous set of stable solutions is
selected in nature.

The crucial fact here is that the point of min-
imum undercooling is also the point of marginal
stability. In our recent work on dendritic solidifi-
cation™® (where an analogous maximum-velocity
principle turned out #of to be valid), we argued
that a system of this kind, when driven by ther-
mal fluctuations or other noise sources, general-
ly drifts toward a state of marginal stability.

The argument, as applied here, is simply that D
decreases with decreasing A, and thus a fluctua-
tion which drives A downwards persists for a
longer time than one which goes in the other di-
rection. If there exists somewhere in the system
some mechanism for creating new lamellae (de-
fects, edges, etc.) then the time-averaged effect
of noise must be to drive the system into new
stable configurations with diminishing values of
A. ‘

We can make the above argument more precise
by considering, in principle, what happens if we
add a noise source to the right-hand side of (7).
As it stands, Eq. (7) does not contain any sources
or sinks for lamellae; it is a strict statement of
local conservation of the field A, and therefore
cannot describe any change in the average value
of A over the entire system. We can circumvent
this difficulty by applying the noise source to
only a finite part of the system—in effect, using
the infinite unperturbed part of the system as the
“A bath”—and then looking to see whether lamel-
lae flow into or out of the noisy zone. The re-
quired analysis is quite simple. Let A be the av-
erage value of A in the presence of noise; and
write the exact A for any particular member of
the ensemble of noise sources in the form A + 6A.
Then expand (7) about A and average over this en-

semble. The result is
N 88k 1 & dp 2
Frani D (R) o T3 T ﬁ«m) Yoo . (9)

If A is roughly constant as a function of x and the
noise is sufficiently weak that the higher-order
terms in (9) are small, then the A flux driven by
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the noise source is

1dD 8 2
S ((6A)2),
Because dD/dA is positive, this flux flows out of
the noisy zone as expected; that is, the lamellae
flow in.

Having argued that fluctuations cause the eutect-
ic system to drift toward A=1, we must inquire
about what happens when the system actually
reaches this point, Equation (7) suggests a very
interesting answer to this question. Suppose that,
as illustrated by the solid curve in Fig. 2(a), the
system has reached a point where A =1 almost
everywhere but a fluctuation has caused A to drift
to slightly subcritical values in some finite re-
gion., At the minimum of this curve, 8A/&=0,
8°A/8x2>0, and D<0; thus A decreases. Another
useful point to consider is x,, defined by A(x,, ¢)
=1. Differentiating this relation and using (7),
we find

o . (10)

X=Xy

dx, A/t [?A
dt = aA/ax .

The sign of the right-hand side implies that the
pair of points labeled x, in the figure are ap-
proaching each other. The resulting behavior is
indicated by the arrows and dashed curve in Fig.

(b)

FIG. 2. Schematic illustration of an unstable fluctua-
tion which terminates a lamella. Part (a) shows the
function A at two successive instants A and B. The
corresponding sequence of solidification fronts is shown
in part (b). Front C occurs sometime later when the
system has restabilized at a larger average value of A,

2(a) and by the schematic illustration of the ac-
tual event in Fig. 2(b). What is happening here
is that all of the intensity of an initially diffuse
and shallow fluctuation is being concentrated at
a point. When A touches zero, the lamella at
that point disappears, and the equation of motion
loses its validity. The physical system presum-
ably reverts to a state with fewer lamellae and
larger average A, from which configuration the
entire process must start all over again.

The process just described is a mechanism for
the amplification of small fluctuations near the
marginal-stability point. In general, if the mar-
ginal-stability principle is valid, one expects
pattern-forming systems to be strongly sensitive
to perturbations simply because the linear re-
storing force for some class of deformations van-
ishes at the operating point. In the eutectic sys-
tem, this sensitivity shows up in the way that
weak fluctuations are able to trigger macroscopic
events, i.e. the termination of lamellae. It is
tempting to speculate that a similar mechanism
is present in the Bénard system. Perhaps ex-
tended Bénard systems are intrinsically noisy®
because they are operating at a marginal-stability
point where microscopic fluctuations are capable
of inducing random macroscopic defects in the
convection pattern.
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ERRATUM

STUDY OF THE DECAY K,°~#*7"y. A. S. Carroll, I-H. Chiang, T. F. Kycia, K. K. Li, L. Litten-
berg, M. Marx, P. O. Mazur, J. P. de Brion, and W. C. Carithers [Phys. Rev. Lett. 44, 529 (1980)].

On page 531, column 2, lines 9 and 10 should read as follows: “... the 6 distribution of the direct
decay would be sin®0(1 +a cos®9) ...”. The expression for d*W/dkd cosé on line 19 of the same page

should read as follows:

dazw o

4V __a BB 2816 [na.|® 8 |n..|sin(p,. +8,-5")
dkdcost

r - 15 _ 2 2
(Ks mw )830 Be (l_ﬁzcosza)z P I—BZCOSZG XE+(XE +XM) .
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