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Optical measurements of phosphorus-doped silicon yield a donor susceptibility which

can be fitted with a critical form that extrapolates to a polarization catastrophe at the
insulator-metal transition. The exponent is about twice classical predictions and demon-

strates the quantum nature of the transition.

PACS numbers: 71.80.+h

As an ensemble of atoms approach one another,
a transition from an insulating to a metallic state
can occur. ' A classic example in which such a
transition occurs is the random array of impur-
ity atoms in a crystalline semiconductor. Anal-
ysis of a variety of measurements on such ma-
terials' has indicated that at low impurity concen-
trations the electrons are localized. The behav-
ior of the dc electrical conductivity is nonanalytic
at zero temperature, being zero over a finite
range (in density) in the insulator and finite in
the metal, but the conductivity varies smoothly
at finite temperatures. The behavior of the do-
nor electric susceptibility X is less clear. (y is
related to the total dielectric constant, e, and
that of the host Si, e~, , through e =as;+47tx )In.
the insulator, y should be finite and positive, '
and in the metal it may be either large and nega-
tive, as indicated by the Drude theory, or infi-
nite, as suggested by Altshuler and Aronov' for a
disordered system.

Classical analyses&' based on percolation theo-
ry for metallic inclusions in a dielectric predict
a critical divergence of X, with various values of
the exponent. In contrast to this prediction of a
polarization catastrophe, Ghazali and I eroux-
Hugon' find that y is enhanced by only a factor of
3 (relative to the result for noninteracting donors)
for their model of a doped semiconductor in
which the donors are arranged on a lattice.

The experimental behavior of y is also the sub-
ject of some disagreement. In 1956, D'Altroy
and Fan' found a large enhancement in y at mi-
crowave frequencies and low temperature for
doped Ge. Measurements of metal ammonia so-

lutions' near room temperature suggested only
a small enhancement and a value of y = 0 at the
critical density, n». Ref lectivity of doped Ge at
two far-infrared frequencies and low tempera-
tures was interpreted' as indicating no enhance-
ment whatever of y in the insulating phase. In
contrast, Castner et al. ' found enhancements up
to a factor of 3 based an low-frequency capaci-
tance measurements extrapolated to zero tem-
perature for several dopants in Si and Ge. Town-
send" found similar results based on oscilla-
tions due to interference in the transmitted in-
tensity as a function of far-infrared frequency.

We use an optical method of determining y
which appears to be particularly suitable far in-
vestigating a phase transition at T =0 K. We
measure the absorption coefficient a (up) at ener-
gies h& in the range 2.5 to 58 meV and a temper-
ature T = 2 K at which ha!»kT and a (&u) is in the
zero-T limit. To obtain o (v) we pass far-infra-
red radiation through a Michelson interferom-
eter, a cold filter that cuts off photons above &
~ 500 cm ', and the Si:P sample. We detect the
transmitted intensity using a Ge:In bolometer at
T near that of the sample, Fourier transform
the resulting interferograms, and then ratio the
Si:P data to a Si reference. Finally, we trans-
form o (u, ) to obtain the ~ = 0 refractive index
n(0) using the Kramers-Kronig relation,

n(0)=n„+(c/m) f " [n(u))/(u']d(, (I)
where e is the speed of light. We correct the val-
ues of o. for nD&10" cm ' for the donor reflec-
tivity using the Kramers-Kronig relations at fi-
nite frequency in a self-consistent manner. The
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FIG. 1. Graph of the integrand in the Kramers-
Kronig relation for the co = 0 dielectric susceptibility

X for samples of Si:P as a function of photon energy
co. The area under each curve gives y for the P donors.
With increasing ~ the curves show the strong growth
of the absorption cross section e/~ at lower ~ which,
with 1/aP factor, enhances y. The dashed line is an
a 2 tail added analytically to satisfy the sum rule on
0.((u).

energy 5+„is large enough to include transitions
from the donors to the conduction-band states,
but is below the Si band gap (1.17 eV). Since
n(0)'=e and ns; -=as;"'= (11.4)"', g follows from

This optical method has the additional advantage
of directly measuring the donor contribution to y,
rather than the total e.

We have plotted in Fig. 1 the integrand in Eq.
(1) (normalized to the impurity concentration, "
n~), for two values of nD for Si:P. The 1/~' fac-
tor enhances the contribution to y from low ener-
gies. At low concentrations, such as nD = 3.1
& 10" cm ', we have found" that the lowest-en-
ergy tail of the sharp isolated donor peaks arises
from charge-transfer D'D states of donor pairs
which are excitons in the Mott-Hubbard gap be-
tween the D' and D bands. For nDa 0.1n»,
e.g. , 1.05x 10"cm ', the corresponding states
of larger clusters are dominant' and, in addition,
the forbidden transition between the upper and
lower levels of the valley-orbit-split ground
state is seen near ~ =100 cm '. In this range of
na, a simple phenomenological model of absorp-

FlG. 2. Mg-log plot of 4m' vs nsz /nD —1. The open
circles are obtained for samples of Si:P as illustrated
in Fig. 1. The dashed line, y=apn&, fitted for nD
( 10'~, determines the isolated-donor polarizability
Dp. The solid line, Eq. (4), determines the exponents
g = 1.09+ 0.1 as n~ —n„i = (8.8+ 0.2) x 10~ cm ~.

tion by randomly occurring clusters"'" can de-
scribe the shape and density dependence of the
absorption edge.
The frequency range of the measurements (20-

470 cm ') does not fully satisfy the f -sum rule,
which can be written"

J "a(ur) der =2 ' itneD'/( men„), (3)

where m* is the optical electron mass 1/m*
=1/3mii+2/3m'. To satisfy Eq. (3), we have
added a Drude tail to a (&u), for ru & co, =470 cm ',
of the form a (~,)(u, '+0)/(w'+0), adjusting the
constant 0 (dashed line, Fig. 1). The contribu-
tion to y from ~ & ~, is small because of the 1/m'

weighting and we find X to be insensitive to the
shape of the tail. (We have also tested a triangu-
lar shape. )

Figures 2 and 3 show our results for y vs nD.
The dashed line in both figures is the linear be-
havior of isolated donors, fitted for nD&10" cm '
in Fig. 2, which determines the isolated-donor
polarizability

Dz= lim (X/nD) = (11+ 1)x 10 A,
nD O

in agreement with Lipari and Dexter's' calculat-
ed D~= 12x 10' A', whereas earlier measure-
ments' gave 24 and 16' 10 A . The solid line is
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FIG. B. Linear plots of X vs nD showing comparison
of our results (solid circles) with those of Ref. 2 (open
circles) and Ref. 10 (triangles) as well as with the same
theoretical curves as in Fig. 2 and that of Eq. (5)
{dotted line). In the inset, the linear behavior of 1/y
=—1/y ' vs 1/no (in units 10 ' cm ~) shows the in-
tercept at 1/n~ where the data extrapolate to a polari-
zation catastrophe.

cent results by Castner et al. ' are shown as open
circles and those by Townsend" as triangles.
The data appear to be reliable with good accura-
cy' at higher mD. We have checked for consis-
tency of our choice of nial by inverting Eq. (4) and

plotting 1/y—:1/y'"" vs 1/no as shown in the in-
set in Fig. 3. This form extrapolates to a polar-
ization catastrophe at n„I = (3.8+ 0.2)x 10"cm '.
This value agrees with that indicated by our
measurements of the resistivity. "

In conclusion, we have shown, through an anal-
ysis of the absorption spectrum of donors in
Si:P, the tendency of the donor susceptibility to
diverge, as &a-n„r at T =0 K, with an exponent
much larger than classical percolation theories.
While we cannot prove that g diverges at g», its
enhancement by over an order of magnitude and
its shape suggest quantum behavior leading to an
infinite donor susceptibility at the insulator-met-
al transition.

We wish to thank S. J. Allen, T. G. Castner,
and P. C. Hohenberg for helpful comments and
J. B. Mock for technical assistance.

a fit to our data of the form

lt = Xo(n„i/no —1) (4)

where D~ is from our experiment and the form
1/Eo' reflects the 1/w' weighting in Eq. (1). The
variation of Eo/Eo, is obtained from a polarized
orbital calculation" for a simple-cubic lattice.
This scaling form does not fit the data complete-
ly, but illustrates the qualitative behavior. Re-

where X, is a constant. The slope in Fig. 2 as
no-n„r determines g = 1.09+ 0.1, and the same
solid line is shown in Fig. 3, with y, =0.56. The
error quoted for f is statistical and neglects the
systematic uncertainty due to a lack of data clos-
er to n». However, the classical percolation
theories give &=0.6 (Ref. 4) or less. ' Recently,
McMillan, "using scaling arguments for quantum

diffusion, has suggested that g scales with the
square of the localization length for nD(net and

diverges with g between 1.2 and 2.
The dotted line in Fig. 3 is a theoretical esti-

mate of y based on scaling the calculated fraction-
al reduction in the energy gap Eo/Eo, between
the D'and D band edges. We use
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